t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
o(f(x1)) → f(o(x1))
n(s(x1)) → f(s(x1))
o(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS Reverse
↳ QTRS Reverse
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
o(f(x1)) → f(o(x1))
n(s(x1)) → f(s(x1))
o(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
o(f(x1)) → f(o(x1))
n(s(x1)) → f(s(x1))
o(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
Used ordering:
o(f(x1)) → f(o(x1))
POL(c(x1)) = x1
POL(f(x1)) = 2 + x1
POL(n(x1)) = 2 + x1
POL(o(x1)) = 1 + 2·x1
POL(s(x1)) = 1 + x1
POL(t(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS Reverse
↳ QTRS Reverse
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
o(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
o(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
Used ordering:
o(s(x1)) → f(s(x1))
POL(c(x1)) = x1
POL(f(x1)) = 2·x1
POL(n(x1)) = 2·x1
POL(o(x1)) = 1 + 2·x1
POL(s(x1)) = 2·x1
POL(t(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
C(n(x1)) → C(x1)
T(f(x1)) → C(n(x1))
T(f(x1)) → T(c(n(x1)))
C(o(x1)) → C(x1)
C(f(x1)) → C(x1)
C(n(x1)) → N(c(x1))
N(f(x1)) → N(x1)
T(f(x1)) → N(x1)
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
C(n(x1)) → C(x1)
T(f(x1)) → C(n(x1))
T(f(x1)) → T(c(n(x1)))
C(o(x1)) → C(x1)
C(f(x1)) → C(x1)
C(n(x1)) → N(c(x1))
N(f(x1)) → N(x1)
T(f(x1)) → N(x1)
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
N(f(x1)) → N(x1)
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
N(f(x1)) → N(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
N(f(x1)) → N(x1)
No rules are removed from R.
N(f(x1)) → N(x1)
POL(N(x1)) = 2·x1
POL(f(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
C(n(x1)) → C(x1)
C(o(x1)) → C(x1)
C(f(x1)) → C(x1)
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
C(n(x1)) → C(x1)
C(f(x1)) → C(x1)
C(o(x1)) → C(x1)
No rules are removed from R.
C(n(x1)) → C(x1)
C(f(x1)) → C(x1)
C(o(x1)) → C(x1)
POL(C(x1)) = 2·x1
POL(f(x1)) = 2·x1
POL(n(x1)) = 2·x1
POL(o(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QTRS Reverse
↳ QTRS Reverse
T(f(x1)) → T(c(n(x1)))
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesProof
↳ QTRS Reverse
↳ QTRS Reverse
T(f(x1)) → T(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
T(f(x1)) → T(c(n(x1)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
T(f(f(x0))) → T(c(f(n(x0))))
T(f(x0)) → T(n(c(x0)))
T(f(s(x0))) → T(c(f(s(x0))))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
T(f(f(x0))) → T(c(f(n(x0))))
T(f(x0)) → T(n(c(x0)))
T(f(s(x0))) → T(c(f(s(x0))))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
T(f(s(x0))) → T(c(f(s(x0))))
Used ordering: Polynomial Order [21,25] with Interpretation:
T(f(f(x0))) → T(c(f(n(x0))))
T(f(x0)) → T(n(c(x0)))
POL( s(x1) ) = x1 + 1
POL( T(x1) ) = x1 + 1
POL( c(x1) ) = max{0, -1}
POL( n(x1) ) = x1
POL( f(x1) ) = x1
POL( o(x1) ) = max{0, -1}
c(n(x1)) → n(c(x1))
n(s(x1)) → f(s(x1))
n(f(x1)) → f(n(x1))
c(f(x1)) → f(c(x1))
c(o(x1)) → o(x1)
c(o(x1)) → o(c(x1))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QTRS Reverse
↳ QTRS Reverse
T(f(f(x0))) → T(c(f(n(x0))))
T(f(x0)) → T(n(c(x0)))
n(f(x1)) → f(n(x1))
n(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
T.1(f.1(x0)) → T.1(n.1(c.1(x0)))
T.0(f.0(x0)) → T.1(n.1(c.0(x0)))
T.1(f.1(f.1(x0))) → T.1(c.1(f.1(n.1(x0))))
T.0(f.0(f.0(x0))) → T.1(c.0(f.0(n.0(x0))))
c.0(n.0(x1)) → n.1(c.0(x1))
n.0(s.1(x1)) → f.0(s.1(x1))
n.1(f.1(x1)) → f.1(n.1(x1))
c.1(o.1(x1)) → o.1(x1)
c.1(f.1(x1)) → f.1(c.1(x1))
n.0(f.0(x1)) → f.0(n.0(x1))
c.1(o.0(x1)) → o.1(c.0(x1))
n.0(s.0(x1)) → f.0(s.0(x1))
c.1(n.1(x1)) → n.1(c.1(x1))
c.0(f.0(x1)) → f.1(c.0(x1))
c.1(o.0(x1)) → o.0(x1)
c.1(o.1(x1)) → o.1(c.1(x1))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
T.1(f.1(x0)) → T.1(n.1(c.1(x0)))
T.0(f.0(x0)) → T.1(n.1(c.0(x0)))
T.1(f.1(f.1(x0))) → T.1(c.1(f.1(n.1(x0))))
T.0(f.0(f.0(x0))) → T.1(c.0(f.0(n.0(x0))))
c.0(n.0(x1)) → n.1(c.0(x1))
n.0(s.1(x1)) → f.0(s.1(x1))
n.1(f.1(x1)) → f.1(n.1(x1))
c.1(o.1(x1)) → o.1(x1)
c.1(f.1(x1)) → f.1(c.1(x1))
n.0(f.0(x1)) → f.0(n.0(x1))
c.1(o.0(x1)) → o.1(c.0(x1))
n.0(s.0(x1)) → f.0(s.0(x1))
c.1(n.1(x1)) → n.1(c.1(x1))
c.0(f.0(x1)) → f.1(c.0(x1))
c.1(o.0(x1)) → o.0(x1)
c.1(o.1(x1)) → o.1(c.1(x1))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
T.1(f.1(x0)) → T.1(n.1(c.1(x0)))
T.1(f.1(f.1(x0))) → T.1(c.1(f.1(n.1(x0))))
c.0(n.0(x1)) → n.1(c.0(x1))
n.0(s.1(x1)) → f.0(s.1(x1))
n.1(f.1(x1)) → f.1(n.1(x1))
c.1(o.1(x1)) → o.1(x1)
c.1(f.1(x1)) → f.1(c.1(x1))
n.0(f.0(x1)) → f.0(n.0(x1))
c.1(o.0(x1)) → o.1(c.0(x1))
n.0(s.0(x1)) → f.0(s.0(x1))
c.1(n.1(x1)) → n.1(c.1(x1))
c.0(f.0(x1)) → f.1(c.0(x1))
c.1(o.0(x1)) → o.0(x1)
c.1(o.1(x1)) → o.1(c.1(x1))
Used ordering: POLO with Polynomial interpretation [25]:
c.1(o.0(x1)) → o.1(c.0(x1))
c.0(n.0(x1)) → n.1(c.0(x1))
c.0(f.0(x1)) → f.1(c.0(x1))
POL(T.1(x1)) = x1
POL(c.0(x1)) = x1
POL(c.1(x1)) = x1
POL(f.0(x1)) = 1 + x1
POL(f.1(x1)) = x1
POL(n.0(x1)) = 1 + x1
POL(n.1(x1)) = x1
POL(o.0(x1)) = 1 + x1
POL(o.1(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
T.1(f.1(x0)) → T.1(n.1(c.1(x0)))
T.1(f.1(f.1(x0))) → T.1(c.1(f.1(n.1(x0))))
c.1(o.1(x1)) → o.1(x1)
c.1(f.1(x1)) → f.1(c.1(x1))
c.1(n.1(x1)) → n.1(c.1(x1))
c.1(o.0(x1)) → o.0(x1)
c.1(o.1(x1)) → o.1(c.1(x1))
n.1(f.1(x1)) → f.1(n.1(x1))
T.1(f.1(x0)) → T.1(n.1(c.1(x0)))
T.1(f.1(f.1(x0))) → T.1(c.1(f.1(n.1(x0))))
POL(T.1(x1)) = x1
POL(c.1(x1)) = x1
POL(f.1(x1)) = 1 + x1
POL(n.1(x1)) = x1
POL(o.0(x1)) = x1
POL(o.1(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
↳ QTRS Reverse
c.1(o.1(x1)) → o.1(x1)
c.1(f.1(x1)) → f.1(c.1(x1))
c.1(n.1(x1)) → n.1(c.1(x1))
c.1(o.0(x1)) → o.0(x1)
c.1(o.1(x1)) → o.1(c.1(x1))
n.1(f.1(x1)) → f.1(n.1(x1))
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
o(f(x1)) → f(o(x1))
n(s(x1)) → f(s(x1))
o(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
f(t(x)) → n(c(t(x)))
f(n(x)) → n(f(x))
f(o(x)) → o(f(x))
s(n(x)) → s(f(x))
s(o(x)) → s(f(x))
f(c(x)) → c(f(x))
n(c(x)) → c(n(x))
o(c(x)) → c(o(x))
o(c(x)) → o(x)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
f(t(x)) → n(c(t(x)))
f(n(x)) → n(f(x))
f(o(x)) → o(f(x))
s(n(x)) → s(f(x))
s(o(x)) → s(f(x))
f(c(x)) → c(f(x))
n(c(x)) → c(n(x))
o(c(x)) → c(o(x))
o(c(x)) → o(x)
t(f(x1)) → t(c(n(x1)))
n(f(x1)) → f(n(x1))
o(f(x1)) → f(o(x1))
n(s(x1)) → f(s(x1))
o(s(x1)) → f(s(x1))
c(f(x1)) → f(c(x1))
c(n(x1)) → n(c(x1))
c(o(x1)) → o(c(x1))
c(o(x1)) → o(x1)
f(t(x)) → n(c(t(x)))
f(n(x)) → n(f(x))
f(o(x)) → o(f(x))
s(n(x)) → s(f(x))
s(o(x)) → s(f(x))
f(c(x)) → c(f(x))
n(c(x)) → c(n(x))
o(c(x)) → c(o(x))
o(c(x)) → o(x)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
f(t(x)) → n(c(t(x)))
f(n(x)) → n(f(x))
f(o(x)) → o(f(x))
s(n(x)) → s(f(x))
s(o(x)) → s(f(x))
f(c(x)) → c(f(x))
n(c(x)) → c(n(x))
o(c(x)) → c(o(x))
o(c(x)) → o(x)