a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
B(l(x1)) → A(r(x1))
B(l(x1)) → R(x1)
R(a(x1)) → R(x1)
R(a(x1)) → A(r(x1))
B(l(x1)) → B(a(r(x1)))
A(l(x1)) → A(x1)
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
B(l(x1)) → A(r(x1))
B(l(x1)) → R(x1)
R(a(x1)) → R(x1)
R(a(x1)) → A(r(x1))
B(l(x1)) → B(a(r(x1)))
A(l(x1)) → A(x1)
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
A(l(x1)) → A(x1)
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
A(l(x1)) → A(x1)
No rules are removed from R.
A(l(x1)) → A(x1)
POL(A(x1)) = 2·x1
POL(l(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
A(l(x1)) → A(x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
R(a(x1)) → R(x1)
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
R(a(x1)) → R(x1)
No rules are removed from R.
R(a(x1)) → R(x1)
POL(R(x1)) = 2·x1
POL(a(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
R(a(x1)) → R(x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
B(l(x1)) → B(a(r(x1)))
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
B(l(b(x0))) → B(a(l(b(x0))))
B(l(a(x0))) → B(a(a(r(x0))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
B(l(a(x0))) → B(a(a(r(x0))))
B(l(b(x0))) → B(a(l(b(x0))))
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(l(b(x0))) → B(a(l(b(x0))))
Used ordering: Polynomial Order [21,25] with Interpretation:
B(l(a(x0))) → B(a(a(r(x0))))
POL( r(x1) ) = max{0, -1}
POL( b(x1) ) = 1
POL( l(x1) ) = x1
POL( B(x1) ) = x1
POL( a(x1) ) = max{0, -1}
a(l(x1)) → l(a(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS Reverse
↳ QTRS Reverse
B(l(a(x0))) → B(a(a(r(x0))))
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
B(l(a(x0))) → B(a(a(r(x0))))
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
B(l(a(x0))) → B(a(a(r(x0))))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
a(l(x)) → l(a(x))
r(a(x)) → a(r(x))
b(l(x)) → b(a(r(x)))
r(b(x)) → l(b(x))
B(l(a(x))) → B(a(a(r(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
a(l(x)) → l(a(x))
r(a(x)) → a(r(x))
b(l(x)) → b(a(r(x)))
r(b(x)) → l(b(x))
B(l(a(x))) → B(a(a(r(x))))
L(a(x)) → A(l(x))
L(a(x)) → L(x)
A(l(B(x))) → A(a(B(x)))
L(b(x)) → A(b(x))
B1(r(x)) → L(x)
B1(r(x)) → B1(l(x))
A(r(x)) → A(x)
A(l(B(x))) → A(B(x))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
L(a(x)) → A(l(x))
L(a(x)) → L(x)
A(l(B(x))) → A(a(B(x)))
L(b(x)) → A(b(x))
B1(r(x)) → L(x)
B1(r(x)) → B1(l(x))
A(r(x)) → A(x)
A(l(B(x))) → A(B(x))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
A(r(x)) → A(x)
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
A(r(x)) → A(x)
No rules are removed from R.
A(r(x)) → A(x)
POL(A(x1)) = 2·x1
POL(r(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
A(r(x)) → A(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
L(a(x)) → L(x)
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
L(a(x)) → L(x)
No rules are removed from R.
L(a(x)) → L(x)
POL(L(x1)) = 2·x1
POL(a(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
L(a(x)) → L(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
B1(r(x)) → B1(l(x))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
B1(r(a(x0))) → B1(a(l(x0)))
B1(r(b(x0))) → B1(r(a(b(x0))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
B1(r(a(x0))) → B1(a(l(x0)))
B1(r(b(x0))) → B1(r(a(b(x0))))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B1(r(b(x0))) → B1(r(a(b(x0))))
Used ordering: Polynomial Order [21,25] with Interpretation:
B1(r(a(x0))) → B1(a(l(x0)))
POL( B1(x1) ) = x1
POL( r(x1) ) = x1
POL( b(x1) ) = x1 + 1
POL( l(x1) ) = 0
POL( B(x1) ) = max{0, -1}
POL( a(x1) ) = max{0, -1}
a(l(B(x))) → r(a(a(B(x))))
a(r(x)) → r(a(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
B1(r(a(x0))) → B1(a(l(x0)))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(B(x))) → r(a(a(B(x))))
a(l(x)) → l(a(x))
r(a(x)) → a(r(x))
b(l(x)) → b(a(r(x)))
r(b(x)) → l(b(x))
B(l(a(x))) → B(a(a(r(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
a(l(x)) → l(a(x))
r(a(x)) → a(r(x))
b(l(x)) → b(a(r(x)))
r(b(x)) → l(b(x))
B(l(a(x))) → B(a(a(r(x))))
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
a(l(x1)) → l(a(x1))
r(a(x1)) → a(r(x1))
b(l(x1)) → b(a(r(x1)))
r(b(x1)) → l(b(x1))
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
l(a(x)) → a(l(x))
a(r(x)) → r(a(x))
l(b(x)) → r(a(b(x)))
b(r(x)) → b(l(x))