a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
A(b(x1)) → A(a(a(x1)))
B(a(x1)) → A(a(x1))
A(b(x1)) → B(a(a(a(x1))))
A(a(x1)) → A(c(b(x1)))
A(b(x1)) → A(a(x1))
A(a(x1)) → B(x1)
A(b(x1)) → A(x1)
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
A(b(x1)) → A(a(a(x1)))
B(a(x1)) → A(a(x1))
A(b(x1)) → B(a(a(a(x1))))
A(a(x1)) → A(c(b(x1)))
A(b(x1)) → A(a(x1))
A(a(x1)) → B(x1)
A(b(x1)) → A(x1)
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
A(b(x1)) → A(a(a(x1)))
B(a(x1)) → A(a(x1))
A(b(x1)) → B(a(a(a(x1))))
A(b(x1)) → A(a(x1))
A(a(x1)) → B(x1)
A(b(x1)) → A(x1)
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(b(x1)) → A(a(a(x1)))
A(b(x1)) → B(a(a(a(x1))))
A(b(x1)) → A(a(x1))
A(b(x1)) → A(x1)
Used ordering: Polynomial Order [21,25] with Interpretation:
B(a(x1)) → A(a(x1))
A(a(x1)) → B(x1)
POL( A(x1) ) = x1
POL( c(x1) ) = max{0, -1}
POL( b(x1) ) = x1 + 1
POL( B(x1) ) = x1
POL( a(x1) ) = x1
a(a(x1)) → a(c(b(x1)))
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS Reverse
B(a(x1)) → A(a(x1))
A(a(x1)) → B(x1)
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
B(a(x1)) → A(a(x1))
A(a(x1)) → B(x1)
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
B(a(x1)) → A(a(x1))
A(a(x1)) → B(x1)
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
a(b(x)) → b(a(a(a(x))))
b(a(x)) → a(a(x))
a(a(x)) → a(c(b(x)))
B(a(x)) → A(a(x))
A(a(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
a(b(x)) → b(a(a(a(x))))
b(a(x)) → a(a(x))
a(a(x)) → a(c(b(x)))
B(a(x)) → A(a(x))
A(a(x)) → B(x)
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
a(b(x)) → b(a(a(a(x))))
b(a(x)) → a(a(x))
a(a(x)) → a(c(b(x)))
B(a(x)) → A(a(x))
A(a(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
a(b(x)) → b(a(a(a(x))))
b(a(x)) → a(a(x))
a(a(x)) → a(c(b(x)))
B(a(x)) → A(a(x))
A(a(x)) → B(x)
A1(B(x)) → A1(A(x))
B1(a(x)) → B1(x)
B1(a(x)) → A1(a(b(x)))
B1(a(x)) → A1(b(x))
A1(a(x)) → B1(c(a(x)))
B1(a(x)) → A1(a(a(b(x))))
A1(b(x)) → A1(x)
A1(b(x)) → A1(a(x))
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
A1(B(x)) → A1(A(x))
B1(a(x)) → B1(x)
B1(a(x)) → A1(a(b(x)))
B1(a(x)) → A1(b(x))
A1(a(x)) → B1(c(a(x)))
B1(a(x)) → A1(a(a(b(x))))
A1(b(x)) → A1(x)
A1(b(x)) → A1(a(x))
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
A1(b(x)) → A1(a(x))
A1(b(x)) → A1(x)
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
A1(b(x)) → A1(x)
A1(b(x)) → A1(a(x))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
a(A(x)) → B(x)
POL(A(x1)) = 1 + 2·x1
POL(A1(x1)) = 2·x1
POL(B(x1)) = 1 + 2·x1
POL(a(x1)) = 2·x1
POL(b(x1)) = 2·x1
POL(c(x1)) = x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
A1(b(x)) → A1(a(x))
A1(b(x)) → A1(x)
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
Used ordering: POLO with Polynomial interpretation [25]:
a(B(x)) → a(A(x))
POL(A(x1)) = 1 + x1
POL(A1(x1)) = x1
POL(B(x1)) = 2 + x1
POL(a(x1)) = 2·x1
POL(b(x1)) = 2·x1
POL(c(x1)) = x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
A1(b(x)) → A1(x)
A1(b(x)) → A1(a(x))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
A1(b(x)) → A1(x)
POL(A1(x1)) = 2·x1
POL(a(x1)) = 1 + 2·x1
POL(b(x1)) = 1 + 2·x1
POL(c(x1)) = x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
A1(b(x)) → A1(a(x))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A1(b(x)) → A1(a(x))
The value of delta used in the strict ordering is 4.
POL(c(x1)) = (3/4)x_1
POL(A1(x1)) = (2)x_1
POL(a(x1)) = 2 + (4)x_1
POL(b(x1)) = 4 + (4)x_1
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ UsableRulesProof
↳ QDP
↳ QTRS Reverse
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QTRS Reverse
A1(b(x)) → A1(x)
A1(b(x)) → A1(a(x))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QTRS Reverse
B1(a(x)) → B1(x)
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
a(B(x)) → a(A(x))
a(A(x)) → B(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesProof
↳ QTRS Reverse
B1(a(x)) → B1(x)
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QTRS Reverse
B1(a(x)) → B1(x)
No rules are removed from R.
B1(a(x)) → B1(x)
POL(B1(x1)) = 2·x1
POL(a(x1)) = 2·x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
a(b(x1)) → b(a(a(a(x1))))
b(a(x1)) → a(a(x1))
a(a(x1)) → a(c(b(x1)))
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
b(a(x)) → a(a(a(b(x))))
a(b(x)) → a(a(x))
a(a(x)) → b(c(a(x)))