a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
b(a(x)) → a(b(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
b(a(x)) → a(b(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))
C(a(x1)) → C(c(x1))
C(a(x1)) → C(x1)
A(b(x1)) → B(b(a(x1)))
A(b(x1)) → B(a(x1))
C(a(x1)) → A(c(c(x1)))
B(c(x1)) → B(x1)
B(c(x1)) → B(b(x1))
B(c(x1)) → C(b(b(x1)))
A(b(x1)) → A(x1)
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
C(a(x1)) → C(c(x1))
C(a(x1)) → C(x1)
A(b(x1)) → B(b(a(x1)))
A(b(x1)) → B(a(x1))
C(a(x1)) → A(c(c(x1)))
B(c(x1)) → B(x1)
B(c(x1)) → B(b(x1))
B(c(x1)) → C(b(b(x1)))
A(b(x1)) → A(x1)
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
C(a(x1)) → C(c(x1))
C(a(x1)) → C(x1)
POL(A(x1)) = 1 + 2·x1
POL(B(x1)) = x1
POL(C(x1)) = x1
POL(a(x1)) = 1 + 2·x1
POL(b(x1)) = x1
POL(c(x1)) = x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
A(b(x1)) → B(b(a(x1)))
A(b(x1)) → B(a(x1))
C(a(x1)) → A(c(c(x1)))
A(b(x1)) → A(x1)
B(c(x1)) → C(b(b(x1)))
B(c(x1)) → B(b(x1))
B(c(x1)) → B(x1)
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(c(x1)) → C(b(b(x1)))
B(c(x1)) → B(b(x1))
B(c(x1)) → B(x1)
Used ordering: Polynomial Order [21,25] with Interpretation:
A(b(x1)) → B(b(a(x1)))
A(b(x1)) → B(a(x1))
C(a(x1)) → A(c(c(x1)))
A(b(x1)) → A(x1)
POL( A(x1) ) = 1
POL( C(x1) ) = 1
POL( c(x1) ) = x1 + 1
POL( b(x1) ) = x1
POL( B(x1) ) = x1 + 1
POL( a(x1) ) = max{0, -1}
b(c(x1)) → c(b(b(x1)))
a(b(x1)) → b(b(a(x1)))
c(a(x1)) → a(c(c(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
A(b(x1)) → B(b(a(x1)))
A(b(x1)) → B(a(x1))
C(a(x1)) → A(c(c(x1)))
A(b(x1)) → A(x1)
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QTRS Reverse
A(b(x1)) → A(x1)
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QTRS Reverse
A(b(x1)) → A(x1)
No rules are removed from R.
A(b(x1)) → A(x1)
POL(A(x1)) = 2·x1
POL(b(x1)) = 2·x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
a(b(x1)) → b(b(a(x1)))
b(c(x1)) → c(b(b(x1)))
c(a(x1)) → a(c(c(x1)))
b(a(x)) → a(b(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
b(a(x)) → a(b(b(x)))
c(b(x)) → b(b(c(x)))
a(c(x)) → c(c(a(x)))