Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.


QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

The set Q is empty.
We have obtained the following QTRS:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

The set Q is empty.
We have obtained the following QTRS:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

11(1(h(b(x1)))) → 11(1(s(b(x1))))
11(1(h(b(x1)))) → 11(s(b(x1)))
B(t(x1)) → H(x1)
11(t(x1)) → 11(1(1(x1)))
11(s(x1)) → 11(x1)
B(s(x1)) → H(x1)
H(1(b(x1))) → 11(1(b(x1)))
H(1(1(x1))) → 11(h(x1))
B(s(x1)) → B(h(x1))
11(t(x1)) → 11(1(x1))
11(t(x1)) → 11(x1)
H(1(1(x1))) → H(x1)
B(t(x1)) → B(h(x1))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

11(1(h(b(x1)))) → 11(1(s(b(x1))))
11(1(h(b(x1)))) → 11(s(b(x1)))
B(t(x1)) → H(x1)
11(t(x1)) → 11(1(1(x1)))
11(s(x1)) → 11(x1)
B(s(x1)) → H(x1)
H(1(b(x1))) → 11(1(b(x1)))
H(1(1(x1))) → 11(h(x1))
B(s(x1)) → B(h(x1))
11(t(x1)) → 11(1(x1))
11(t(x1)) → 11(x1)
H(1(1(x1))) → H(x1)
B(t(x1)) → B(h(x1))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 4 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ RuleRemovalProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

11(1(h(b(x1)))) → 11(1(s(b(x1))))
11(1(h(b(x1)))) → 11(s(b(x1)))
11(t(x1)) → 11(1(x1))
11(t(x1)) → 11(1(1(x1)))
11(s(x1)) → 11(x1)
11(t(x1)) → 11(x1)

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

11(t(x1)) → 11(1(x1))
11(t(x1)) → 11(1(1(x1)))
11(s(x1)) → 11(x1)
11(t(x1)) → 11(x1)


Used ordering: POLO with Polynomial interpretation [25]:

POL(1(x1)) = x1   
POL(11(x1)) = x1   
POL(b(x1)) = x1   
POL(h(x1)) = 1 + 2·x1   
POL(s(x1)) = 1 + 2·x1   
POL(t(x1)) = 1 + 2·x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ RuleRemovalProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

11(1(h(b(x1)))) → 11(1(s(b(x1))))
11(1(h(b(x1)))) → 11(s(b(x1)))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ RuleRemovalProof
              ↳ QDP
                ↳ DependencyGraphProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

11(1(h(b(x1)))) → 11(1(s(b(x1))))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


11(1(h(b(x1)))) → 11(1(s(b(x1))))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [21,25] with Interpretation:

POL( 11(x1) ) = x1


POL( 1(x1) ) = x1


POL( s(x1) ) = max{0, -1}


POL( b(x1) ) = 1


POL( t(x1) ) = x1


POL( h(x1) ) = x1 + 1



The following usable rules [17] were oriented:

1(s(x1)) → s(1(x1))
1(t(x1)) → t(1(1(1(x1))))
h(1(b(x1))) → t(1(1(b(x1))))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
h(1(1(x1))) → 1(h(x1))
b(t(x1)) → b(h(x1))
b(s(x1)) → b(h(x1))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ RuleRemovalProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

H(1(1(x1))) → H(x1)

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

H(1(1(x1))) → H(x1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
            ↳ UsableRulesProof
QDP
                ↳ UsableRulesReductionPairsProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

H(1(1(x1))) → H(x1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

H(1(1(x1))) → H(x1)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(1(x1)) = 2·x1   
POL(H(x1)) = 2·x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
            ↳ UsableRulesProof
              ↳ QDP
                ↳ UsableRulesReductionPairsProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

B(t(x1)) → B(h(x1))
B(s(x1)) → B(h(x1))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(t(x1)) → B(h(x1)) at position [0] we obtained the following new rules:

B(t(1(1(x0)))) → B(1(h(x0)))
B(t(1(b(x0)))) → B(t(1(1(b(x0)))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

B(t(1(1(x0)))) → B(1(h(x0)))
B(s(x1)) → B(h(x1))
B(t(1(b(x0)))) → B(t(1(1(b(x0)))))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(s(x1)) → B(h(x1)) at position [0] we obtained the following new rules:

B(s(1(1(x0)))) → B(1(h(x0)))
B(s(1(b(x0)))) → B(t(1(1(b(x0)))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

B(t(1(1(x0)))) → B(1(h(x0)))
B(s(1(1(x0)))) → B(1(h(x0)))
B(s(1(b(x0)))) → B(t(1(1(b(x0)))))
B(t(1(b(x0)))) → B(t(1(1(b(x0)))))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R. Interpretation over the domain with elements from 0 to 1.1: 0
B: 0
t: 0
h: 0
s: 0
b: 1
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:

B.0(t.0(1.1(b.0(x0)))) → B.0(t.0(1.0(1.1(b.0(x0)))))
B.0(t.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))
B.0(t.0(1.1(b.1(x0)))) → B.0(t.0(1.0(1.1(b.1(x0)))))
B.0(s.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))
B.0(s.0(1.1(b.1(x0)))) → B.0(t.0(1.0(1.1(b.1(x0)))))
B.0(s.0(1.0(1.1(x0)))) → B.0(1.0(h.1(x0)))
B.0(s.0(1.1(b.0(x0)))) → B.0(t.0(1.0(1.1(b.0(x0)))))
B.0(t.0(1.0(1.1(x0)))) → B.0(1.0(h.1(x0)))

The TRS R consists of the following rules:

1.0(1.0(h.1(b.1(x1)))) → 1.0(1.0(s.1(b.1(x1))))
1.0(t.0(x1)) → t.0(1.0(1.0(1.0(x1))))
1.0(s.0(x1)) → s.0(1.0(x1))
b.0(s.0(x1)) → b.0(h.0(x1))
1.0(t.1(x1)) → t.0(1.0(1.0(1.1(x1))))
1.0(s.1(x1)) → s.0(1.1(x1))
h.0(1.1(b.0(x1))) → t.0(1.0(1.1(b.0(x1))))
h.0(1.0(1.0(x1))) → 1.0(h.0(x1))
b.0(t.1(x1)) → b.0(h.1(x1))
h.0(1.1(b.1(x1))) → t.0(1.0(1.1(b.1(x1))))
b.0(s.1(x1)) → b.0(h.1(x1))
h.0(1.0(1.1(x1))) → 1.0(h.1(x1))
b.0(t.0(x1)) → b.0(h.0(x1))
1.0(1.0(h.1(b.0(x1)))) → 1.0(1.0(s.1(b.0(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
QDP
                        ↳ DependencyGraphProof
                    ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

B.0(t.0(1.1(b.0(x0)))) → B.0(t.0(1.0(1.1(b.0(x0)))))
B.0(t.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))
B.0(t.0(1.1(b.1(x0)))) → B.0(t.0(1.0(1.1(b.1(x0)))))
B.0(s.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))
B.0(s.0(1.1(b.1(x0)))) → B.0(t.0(1.0(1.1(b.1(x0)))))
B.0(s.0(1.0(1.1(x0)))) → B.0(1.0(h.1(x0)))
B.0(s.0(1.1(b.0(x0)))) → B.0(t.0(1.0(1.1(b.0(x0)))))
B.0(t.0(1.0(1.1(x0)))) → B.0(1.0(h.1(x0)))

The TRS R consists of the following rules:

1.0(1.0(h.1(b.1(x1)))) → 1.0(1.0(s.1(b.1(x1))))
1.0(t.0(x1)) → t.0(1.0(1.0(1.0(x1))))
1.0(s.0(x1)) → s.0(1.0(x1))
b.0(s.0(x1)) → b.0(h.0(x1))
1.0(t.1(x1)) → t.0(1.0(1.0(1.1(x1))))
1.0(s.1(x1)) → s.0(1.1(x1))
h.0(1.1(b.0(x1))) → t.0(1.0(1.1(b.0(x1))))
h.0(1.0(1.0(x1))) → 1.0(h.0(x1))
b.0(t.1(x1)) → b.0(h.1(x1))
h.0(1.1(b.1(x1))) → t.0(1.0(1.1(b.1(x1))))
b.0(s.1(x1)) → b.0(h.1(x1))
h.0(1.0(1.1(x1))) → 1.0(h.1(x1))
b.0(t.0(x1)) → b.0(h.0(x1))
1.0(1.0(h.1(b.0(x1)))) → 1.0(1.0(s.1(b.0(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 6 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                      ↳ QDP
                        ↳ DependencyGraphProof
QDP
                            ↳ UsableRulesReductionPairsProof
                    ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

B.0(t.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))
B.0(s.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))

The TRS R consists of the following rules:

1.0(1.0(h.1(b.1(x1)))) → 1.0(1.0(s.1(b.1(x1))))
1.0(t.0(x1)) → t.0(1.0(1.0(1.0(x1))))
1.0(s.0(x1)) → s.0(1.0(x1))
b.0(s.0(x1)) → b.0(h.0(x1))
1.0(t.1(x1)) → t.0(1.0(1.0(1.1(x1))))
1.0(s.1(x1)) → s.0(1.1(x1))
h.0(1.1(b.0(x1))) → t.0(1.0(1.1(b.0(x1))))
h.0(1.0(1.0(x1))) → 1.0(h.0(x1))
b.0(t.1(x1)) → b.0(h.1(x1))
h.0(1.1(b.1(x1))) → t.0(1.0(1.1(b.1(x1))))
b.0(s.1(x1)) → b.0(h.1(x1))
h.0(1.0(1.1(x1))) → 1.0(h.1(x1))
b.0(t.0(x1)) → b.0(h.0(x1))
1.0(1.0(h.1(b.0(x1)))) → 1.0(1.0(s.1(b.0(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

1.0(t.1(x1)) → t.0(1.0(1.0(1.1(x1))))
b.0(t.1(x1)) → b.0(h.1(x1))
Used ordering: POLO with Polynomial interpretation [25]:

POL(1.0(x1)) = x1   
POL(1.1(x1)) = x1   
POL(B.0(x1)) = x1   
POL(b.0(x1)) = x1   
POL(b.1(x1)) = x1   
POL(h.0(x1)) = x1   
POL(h.1(x1)) = x1   
POL(s.0(x1)) = x1   
POL(s.1(x1)) = x1   
POL(t.0(x1)) = x1   
POL(t.1(x1)) = 1 + x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
QDP
                    ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

B.0(t.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))
B.0(s.0(1.0(1.0(x0)))) → B.0(1.0(h.0(x0)))

The TRS R consists of the following rules:

h.0(1.1(b.0(x1))) → t.0(1.0(1.1(b.0(x1))))
h.0(1.0(1.0(x1))) → 1.0(h.0(x1))
h.0(1.1(b.1(x1))) → t.0(1.0(1.1(b.1(x1))))
h.0(1.0(1.1(x1))) → 1.0(h.1(x1))
1.0(1.0(h.1(b.1(x1)))) → 1.0(1.0(s.1(b.1(x1))))
1.0(1.0(h.1(b.0(x1)))) → 1.0(1.0(s.1(b.0(x1))))
1.0(t.0(x1)) → t.0(1.0(1.0(1.0(x1))))
1.0(s.0(x1)) → s.0(1.0(x1))
1.0(s.1(x1)) → s.0(1.1(x1))
b.0(s.1(x1)) → b.0(h.1(x1))
b.0(s.0(x1)) → b.0(h.0(x1))
b.0(t.0(x1)) → b.0(h.0(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
As can be seen after transforming the QDP problem by semantic labelling [33] and then some rule deleting processors, only certain labelled rules and pairs can be used. Hence, we only have to consider all unlabelled pairs and rules (without the decreasing rules for quasi-models).

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
QDP
                        ↳ QDPToSRSProof

Q DP problem:
The TRS P consists of the following rules:

B(t(1(1(x0)))) → B(1(h(x0)))
B(s(1(1(x0)))) → B(1(h(x0)))

The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
QTRS
                            ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))
B(t(1(1(x0)))) → B(1(h(x0)))
B(s(1(1(x0)))) → B(1(h(x0)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

h(1(1(x1))) → 1(h(x1))
1(1(h(b(x1)))) → 1(1(s(b(x1))))
1(s(x1)) → s(1(x1))
b(s(x1)) → b(h(x1))
h(1(b(x1))) → t(1(1(b(x1))))
1(t(x1)) → t(1(1(1(x1))))
b(t(x1)) → b(h(x1))
B(t(1(1(x0)))) → B(1(h(x0)))
B(s(1(1(x0)))) → B(1(h(x0)))

The set Q is empty.
We have obtained the following QTRS:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

The set Q is empty.
We have obtained the following QTRS:

h(1(1(x))) → 1(h(x))
1(1(h(b(x)))) → 1(1(s(b(x))))
1(s(x)) → s(1(x))
b(s(x)) → b(h(x))
h(1(b(x))) → t(1(1(b(x))))
1(t(x)) → t(1(1(1(x))))
b(t(x)) → b(h(x))
B(t(1(1(x)))) → B(1(h(x)))
B(s(1(1(x)))) → B(1(h(x)))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
QTRS
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

h(1(1(x))) → 1(h(x))
1(1(h(b(x)))) → 1(1(s(b(x))))
1(s(x)) → s(1(x))
b(s(x)) → b(h(x))
h(1(b(x))) → t(1(1(b(x))))
1(t(x)) → t(1(1(1(x))))
b(t(x)) → b(h(x))
B(t(1(1(x)))) → B(1(h(x)))
B(s(1(1(x)))) → B(1(h(x)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

The set Q is empty.
We have obtained the following QTRS:

h(1(1(x))) → 1(h(x))
1(1(h(b(x)))) → 1(1(s(b(x))))
1(s(x)) → s(1(x))
b(s(x)) → b(h(x))
h(1(b(x))) → t(1(1(b(x))))
1(t(x)) → t(1(1(1(x))))
b(t(x)) → b(h(x))
B(t(1(1(x)))) → B(1(h(x)))
B(s(1(1(x)))) → B(1(h(x)))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
QTRS
                                ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

h(1(1(x))) → 1(h(x))
1(1(h(b(x)))) → 1(1(s(b(x))))
1(s(x)) → s(1(x))
b(s(x)) → b(h(x))
h(1(b(x))) → t(1(1(b(x))))
1(t(x)) → t(1(1(1(x))))
b(t(x)) → b(h(x))
B(t(1(1(x)))) → B(1(h(x)))
B(s(1(1(x)))) → B(1(h(x)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

S(1(x)) → 11(s(x))
T(1(x)) → 11(1(t(x)))
B1(1(h(x))) → B1(1(1(t(x))))
B1(h(1(1(x)))) → B1(s(1(1(x))))
11(1(t(B(x)))) → 11(B(x))
B1(1(h(x))) → 11(1(t(x)))
B1(h(1(1(x)))) → S(1(1(x)))
B1(1(h(x))) → 11(t(x))
T(1(x)) → 11(1(1(t(x))))
B1(1(h(x))) → T(x)
T(1(x)) → T(x)
11(1(s(B(x)))) → 11(B(x))
T(1(x)) → 11(t(x))
11(1(h(x))) → 11(x)
S(1(x)) → S(x)

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
QDP
                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

S(1(x)) → 11(s(x))
T(1(x)) → 11(1(t(x)))
B1(1(h(x))) → B1(1(1(t(x))))
B1(h(1(1(x)))) → B1(s(1(1(x))))
11(1(t(B(x)))) → 11(B(x))
B1(1(h(x))) → 11(1(t(x)))
B1(h(1(1(x)))) → S(1(1(x)))
B1(1(h(x))) → 11(t(x))
T(1(x)) → 11(1(1(t(x))))
B1(1(h(x))) → T(x)
T(1(x)) → T(x)
11(1(s(B(x)))) → 11(B(x))
T(1(x)) → 11(t(x))
11(1(h(x))) → 11(x)
S(1(x)) → S(x)

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 10 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
QDP
                                          ↳ UsableRulesProof
                                          ↳ UsableRulesProof
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

11(1(h(x))) → 11(x)

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                          ↳ UsableRulesProof
QDP
                                              ↳ UsableRulesReductionPairsProof
                                          ↳ UsableRulesProof
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

11(1(h(x))) → 11(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

11(1(h(x))) → 11(x)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(1(x1)) = 2·x1   
POL(11(x1)) = 2·x1   
POL(h(x1)) = 2·x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ UsableRulesReductionPairsProof
QDP
                                                  ↳ PisEmptyProof
                                          ↳ UsableRulesProof
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                          ↳ UsableRulesProof
QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

11(1(h(x))) → 11(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
QDP
                                          ↳ UsableRulesProof
                                          ↳ UsableRulesProof
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

T(1(x)) → T(x)

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ UsableRulesProof
QDP
                                              ↳ UsableRulesReductionPairsProof
                                          ↳ UsableRulesProof
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

T(1(x)) → T(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

T(1(x)) → T(x)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(1(x1)) = 2·x1   
POL(T(x1)) = 2·x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ UsableRulesReductionPairsProof
QDP
                                                  ↳ PisEmptyProof
                                          ↳ UsableRulesProof
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                          ↳ UsableRulesProof
QDP
                                        ↳ QDP
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

T(1(x)) → T(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
QDP
                                          ↳ UsableRulesProof
                                          ↳ UsableRulesProof
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(1(x)) → S(x)

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ UsableRulesProof
QDP
                                              ↳ UsableRulesReductionPairsProof
                                          ↳ UsableRulesProof
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(1(x)) → S(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

S(1(x)) → S(x)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(1(x1)) = 2·x1   
POL(S(x1)) = 2·x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ UsableRulesReductionPairsProof
QDP
                                                  ↳ PisEmptyProof
                                          ↳ UsableRulesProof
                                        ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                          ↳ UsableRulesProof
QDP
                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(1(x)) → S(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
QDP
                                          ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

B1(1(h(x))) → B1(1(1(t(x))))
B1(h(1(1(x)))) → B1(s(1(1(x))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(1(h(x))) → B1(1(1(t(x)))) at position [0] we obtained the following new rules:

B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(1(h(B(x0)))) → B1(h(1(B(x0))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
QDP
                                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

B1(1(h(B(x0)))) → B1(h(1(B(x0))))
B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(x)))) → B1(s(1(1(x))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
QDP
                                                  ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(x)))) → B1(s(1(1(x))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(h(1(1(x)))) → B1(s(1(1(x)))) at position [0] we obtained the following new rules:

B1(h(1(1(1(s(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(h(1(1(s(B(x0)))))) → B1(s(h(1(B(x0)))))
B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(h(1(1(h(x0))))) → B1(s(h(1(x0))))
B1(h(1(1(1(t(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(h(1(1(t(B(x0)))))) → B1(s(h(1(B(x0)))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

B1(h(1(1(1(s(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
B1(h(1(1(s(B(x0)))))) → B1(s(h(1(B(x0)))))
B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(h(1(1(1(t(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(h(1(1(h(x0))))) → B1(s(h(1(x0))))
B1(h(1(1(t(B(x0)))))) → B1(s(h(1(B(x0)))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
                                                          ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

B1(h(1(1(1(s(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(h(1(1(1(t(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(h(1(1(1(s(B(x0))))))) → B1(s(1(h(1(B(x0)))))) at position [0] we obtained the following new rules:

B1(h(1(1(1(s(B(y0))))))) → B1(1(s(h(1(B(y0))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
QDP
                                                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
B1(h(1(1(1(s(B(y0))))))) → B1(1(s(h(1(B(y0))))))
B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(h(1(1(1(t(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
QDP
                                                                  ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(h(1(1(1(t(B(x0))))))) → B1(s(1(h(1(B(x0))))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(h(1(1(1(t(B(x0))))))) → B1(s(1(h(1(B(x0)))))) at position [0] we obtained the following new rules:

B1(h(1(1(1(t(B(y0))))))) → B1(1(s(h(1(B(y0))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
QDP
                                                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(h(1(1(1(t(B(y0))))))) → B1(1(s(h(1(B(y0))))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
QDP
                                                                          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


B1(h(1(1(1(h(x0)))))) → B1(s(1(h(1(x0)))))
The remaining pairs can at least be oriented weakly.

B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))
Used ordering: Polynomial Order [21,25] with Interpretation:

POL( 1(x1) ) = x1


POL( B(x1) ) = max{0, -1}


POL( t(x1) ) = 1


POL( h(x1) ) = x1 + 1


POL( B1(x1) ) = max{0, x1 - 1}


POL( s(x1) ) = 1


POL( b(x1) ) = max{0, -1}



The following usable rules [17] were oriented:

s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
b(h(1(1(x)))) → b(s(1(1(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))
1(1(h(x))) → h(1(x))



↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ SemLabProof
                    ↳ SemLabProof2
                      ↳ QDP
                        ↳ QDPToSRSProof
                          ↳ QTRS
                            ↳ QTRS Reverse
                              ↳ QTRS
                                ↳ QTRS Reverse
                                ↳ QTRS Reverse
                                ↳ DependencyPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

B1(1(h(1(x0)))) → B1(1(1(1(1(1(t(x0)))))))
B1(h(1(1(y0)))) → B1(1(s(1(y0))))
B1(1(h(b(x0)))) → B1(1(1(h(b(x0)))))

The TRS R consists of the following rules:

1(1(h(x))) → h(1(x))
b(h(1(1(x)))) → b(s(1(1(x))))
s(1(x)) → 1(s(x))
s(b(x)) → h(b(x))
b(1(h(x))) → b(1(1(t(x))))
t(1(x)) → 1(1(1(t(x))))
t(b(x)) → h(b(x))
1(1(t(B(x)))) → h(1(B(x)))
1(1(s(B(x)))) → h(1(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.