a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
A(c(x1)) → A(x1)
A(c(x1)) → B(c(c(a(x1))))
A(c(x1)) → B(b(c(c(a(x1)))))
A(c(x1)) → A(b(b(c(c(a(x1))))))
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
A(c(x1)) → A(x1)
A(c(x1)) → B(c(c(a(x1))))
A(c(x1)) → B(b(c(c(a(x1)))))
A(c(x1)) → A(b(b(c(c(a(x1))))))
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(c(x1)) → A(x1)
A(c(x1)) → A(b(b(c(c(a(x1))))))
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(c(x1)) → A(x1)
Used ordering: Polynomial Order [21,25] with Interpretation:
A(c(x1)) → A(b(b(c(c(a(x1))))))
POL( A(x1) ) = x1 + 1
POL( c(x1) ) = x1 + 1
POL( b(x1) ) = max{0, x1 - 1}
POL( a(x1) ) = x1 + 1
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(c(x1)) → A(b(b(c(c(a(x1))))))
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(c(x1)) → A(b(b(c(c(a(x1))))))
The value of delta used in the strict ordering is 11/8.
POL(c(x1)) = 1/2 + (4)x_1
POL(a(x1)) = (4)x_1
POL(A(x1)) = (4)x_1
POL(b(x1)) = (1/4)x_1
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
↳ QTRS Reverse
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
b(a(x)) → x
c(a(x)) → a(c(c(b(b(a(x))))))
c(b(x)) → x
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
b(a(x)) → x
c(a(x)) → a(c(c(b(b(a(x))))))
c(b(x)) → x
a(b(x1)) → x1
a(c(x1)) → a(b(b(c(c(a(x1))))))
b(c(x1)) → x1
b(a(x)) → x
c(a(x)) → a(c(c(b(b(a(x))))))
c(b(x)) → x
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
b(a(x)) → x
c(a(x)) → a(c(c(b(b(a(x))))))
c(b(x)) → x