a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
b(a(x)) → x
c(b(a(x))) → b(a(a(c(b(c(b(x)))))))
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
b(a(x)) → x
c(b(a(x))) → b(a(a(c(b(c(b(x)))))))
A(b(c(x1))) → A(a(b(x1)))
A(b(c(x1))) → A(b(x1))
a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
A(b(c(x1))) → A(a(b(x1)))
A(b(c(x1))) → A(b(x1))
a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(b(c(x1))) → A(a(b(x1)))
A(b(c(x1))) → A(b(x1))
The value of delta used in the strict ordering is 1/64.
POL(c(x1)) = 1/4 + (4)x_1
POL(a(x1)) = (4)x_1
POL(A(x1)) = (1/4)x_1
POL(b(x1)) = (1/4)x_1
a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
a(b(x1)) → x1
a(b(c(x1))) → b(c(b(c(a(a(b(x1)))))))
b(a(x)) → x
c(b(a(x))) → b(a(a(c(b(c(b(x)))))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
b(a(x)) → x
c(b(a(x))) → b(a(a(c(b(c(b(x)))))))