a(a(b(x1))) → c(x1)
a(c(x1)) → b(c(a(a(x1))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
a(a(b(x1))) → c(x1)
a(c(x1)) → b(c(a(a(x1))))
b(c(x1)) → x1
A(c(x1)) → B(c(a(a(x1))))
A(c(x1)) → A(x1)
A(c(x1)) → A(a(x1))
a(a(b(x1))) → c(x1)
a(c(x1)) → b(c(a(a(x1))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
A(c(x1)) → B(c(a(a(x1))))
A(c(x1)) → A(x1)
A(c(x1)) → A(a(x1))
a(a(b(x1))) → c(x1)
a(c(x1)) → b(c(a(a(x1))))
b(c(x1)) → x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A(c(x1)) → A(x1)
A(c(x1)) → A(a(x1))
a(a(b(x1))) → c(x1)
a(c(x1)) → b(c(a(a(x1))))
b(c(x1)) → x1
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(c(x1)) → A(x1)
Used ordering: Polynomial Order [21,25] with Interpretation:
A(c(x1)) → A(a(x1))
POL( A(x1) ) = x1
POL( c(x1) ) = x1 + 1
POL( b(x1) ) = max{0, x1 - 1}
POL( a(x1) ) = x1 + 1
a(a(b(x1))) → c(x1)
b(c(x1)) → x1
a(c(x1)) → b(c(a(a(x1))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
A(c(x1)) → A(a(x1))
a(a(b(x1))) → c(x1)
a(c(x1)) → b(c(a(a(x1))))
b(c(x1)) → x1
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(c(x1)) → A(a(x1))
The value of delta used in the strict ordering is 8.
POL(c(x1)) = 4 + (2)x_1
POL(a(x1)) = (2)x_1
POL(A(x1)) = (2)x_1
POL(b(x1)) = 1 + (1/2)x_1
a(a(b(x1))) → c(x1)
b(c(x1)) → x1
a(c(x1)) → b(c(a(a(x1))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
a(a(b(x1))) → c(x1)
a(c(x1)) → b(c(a(a(x1))))
b(c(x1)) → x1