Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A(x1) → B(c(x1))
C(c(b(x1))) → A(c(x1))
C(c(b(x1))) → B(c(a(c(x1))))
A(x1) → C(x1)
C(c(b(x1))) → C(x1)
C(c(b(x1))) → C(a(c(x1)))

The TRS R consists of the following rules:

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(x1) → B(c(x1))
C(c(b(x1))) → A(c(x1))
C(c(b(x1))) → B(c(a(c(x1))))
A(x1) → C(x1)
C(c(b(x1))) → C(x1)
C(c(b(x1))) → C(a(c(x1)))

The TRS R consists of the following rules:

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(c(b(x1))) → A(c(x1))
A(x1) → C(x1)
C(c(b(x1))) → C(x1)
C(c(b(x1))) → C(a(c(x1)))

The TRS R consists of the following rules:

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(c(b(x1))) → C(a(c(x1))) at position [0] we obtained the following new rules:

C(c(b(y0))) → C(b(c(c(y0))))
C(c(b(c(b(x0))))) → C(a(b(c(a(c(x0))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(c(b(y0))) → C(b(c(c(y0))))
C(c(b(c(b(x0))))) → C(a(b(c(a(c(x0))))))
C(c(b(x1))) → A(c(x1))
A(x1) → C(x1)
C(c(b(x1))) → C(x1)

The TRS R consists of the following rules:

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
QTRS
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))
C(c(b(y0))) → C(b(c(c(y0))))
C(c(b(c(b(x0))))) → C(a(b(c(a(c(x0))))))
C(c(b(x1))) → A(c(x1))
A(x1) → C(x1)
C(c(b(x1))) → C(x1)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))
C(c(b(y0))) → C(b(c(c(y0))))
C(c(b(c(b(x0))))) → C(a(b(c(a(c(x0))))))
C(c(b(x1))) → A(c(x1))
A(x1) → C(x1)
C(c(b(x1))) → C(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → b(c(x))
b(b(x)) → x
c(c(b(x))) → b(c(a(c(x))))
C(c(b(x))) → C(b(c(c(x))))
C(c(b(c(b(x))))) → C(a(b(c(a(c(x))))))
C(c(b(x))) → A(c(x))
A(x) → C(x)
C(c(b(x))) → C(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
QTRS
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → b(c(x))
b(b(x)) → x
c(c(b(x))) → b(c(a(c(x))))
C(c(b(x))) → C(b(c(c(x))))
C(c(b(c(b(x))))) → C(a(b(c(a(c(x))))))
C(c(b(x))) → A(c(x))
A(x) → C(x)
C(c(b(x))) → C(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → b(c(x))
b(b(x)) → x
c(c(b(x))) → b(c(a(c(x))))
C(c(b(x))) → C(b(c(c(x))))
C(c(b(c(b(x))))) → C(a(b(c(a(c(x))))))
C(c(b(x))) → A(c(x))
A(x) → C(x)
C(c(b(x))) → C(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
QTRS
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → b(c(x))
b(b(x)) → x
c(c(b(x))) → b(c(a(c(x))))
C(c(b(x))) → C(b(c(c(x))))
C(c(b(c(b(x))))) → C(a(b(c(a(c(x))))))
C(c(b(x))) → A(c(x))
A(x) → C(x)
C(c(b(x))) → C(x)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(c(C(x))) → B(C(x))
B(c(b(c(C(x))))) → B(a(C(x)))
A1(x) → B(x)
B(c(c(x))) → B(x)
B(c(b(c(C(x))))) → A1(c(b(a(C(x)))))
B(c(C(x))) → A2(x)
B(c(c(x))) → A1(c(b(x)))
B(c(b(c(C(x))))) → A1(C(x))

The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
QDP
                          ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(c(C(x))) → B(C(x))
B(c(b(c(C(x))))) → B(a(C(x)))
A1(x) → B(x)
B(c(c(x))) → B(x)
B(c(b(c(C(x))))) → A1(c(b(a(C(x)))))
B(c(C(x))) → A2(x)
B(c(c(x))) → A1(c(b(x)))
B(c(b(c(C(x))))) → A1(C(x))

The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(c(b(c(C(x))))) → B(a(C(x)))
A1(x) → B(x)
B(c(c(x))) → B(x)
B(c(b(c(C(x))))) → A1(c(b(a(C(x)))))
B(c(c(x))) → A1(c(b(x)))
B(c(b(c(C(x))))) → A1(C(x))

The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(c(b(c(C(x))))) → B(a(C(x))) at position [0] we obtained the following new rules:

B(c(b(c(C(y0))))) → B(c(b(C(y0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
QDP
                                  ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(x) → B(x)
B(c(b(c(C(y0))))) → B(c(b(C(y0))))
B(c(c(x))) → B(x)
B(c(b(c(C(x))))) → A1(c(b(a(C(x)))))
B(c(c(x))) → A1(c(b(x)))
B(c(b(c(C(x))))) → A1(C(x))

The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ Instantiation
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(x) → B(x)
B(c(c(x))) → B(x)
B(c(b(c(C(x))))) → A1(c(b(a(C(x)))))
B(c(c(x))) → A1(c(b(x)))
B(c(b(c(C(x))))) → A1(C(x))

The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule A1(x) → B(x) we obtained the following new rules:

A1(C(y_0)) → B(C(y_0))
A1(c(y_1)) → B(c(y_1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Instantiation
QDP
                                          ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(c(c(x))) → B(x)
B(c(b(c(C(x))))) → A1(c(b(a(C(x)))))
A1(C(y_0)) → B(C(y_0))
B(c(c(x))) → A1(c(b(x)))
B(c(b(c(C(x))))) → A1(C(x))
A1(c(y_1)) → B(c(y_1))

The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ DependencyGraphProof
QDP
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(c(c(x))) → B(x)
B(c(b(c(C(x))))) → A1(c(b(a(C(x)))))
B(c(c(x))) → A1(c(b(x)))
A1(c(y_1)) → B(c(y_1))

The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))
b(c(C(x))) → c(c(b(C(x))))
b(c(b(c(C(x))))) → c(a(c(b(a(C(x))))))
b(c(C(x))) → c(A(x))
A(x) → C(x)
b(c(C(x))) → C(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → b(c(x1))
b(b(x1)) → x1
c(c(b(x1))) → b(c(a(c(x1))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → c(b(x))
b(b(x)) → x
b(c(c(x))) → c(a(c(b(x))))

Q is empty.