Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
Q is empty.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
The set Q is empty.
We have obtained the following QTRS:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
The set Q is empty.
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
C(c(x1)) → A(a(b(x1)))
A(x1) → B(c(x1))
C(c(x1)) → A(b(x1))
A(x1) → C(x1)
C(c(x1)) → B(x1)
B(a(b(x1))) → C(x1)
The TRS R consists of the following rules:
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C(c(x1)) → A(a(b(x1)))
A(x1) → B(c(x1))
C(c(x1)) → A(b(x1))
A(x1) → C(x1)
C(c(x1)) → B(x1)
B(a(b(x1))) → C(x1)
The TRS R consists of the following rules:
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
C(c(x1)) → A(b(x1))
C(c(x1)) → B(x1)
Used ordering: POLO with Polynomial interpretation [25]:
POL(A(x1)) = 1 + 2·x1
POL(B(x1)) = x1
POL(C(x1)) = 1 + 2·x1
POL(a(x1)) = 1 + 2·x1
POL(b(x1)) = x1
POL(c(x1)) = 1 + 2·x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A(x1) → B(c(x1))
C(c(x1)) → A(a(b(x1)))
A(x1) → C(x1)
B(a(b(x1))) → C(x1)
The TRS R consists of the following rules:
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(x1) → B(c(x1)) at position [0] we obtained the following new rules:
A(c(x0)) → B(a(a(b(x0))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C(c(x1)) → A(a(b(x1)))
A(x1) → C(x1)
A(c(x0)) → B(a(a(b(x0))))
B(a(b(x1))) → C(x1)
The TRS R consists of the following rules:
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
C(c(x1)) → A(a(b(x1)))
A(x1) → C(x1)
A(c(x0)) → B(a(a(b(x0))))
B(a(b(x1))) → C(x1)
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
C(c(x1)) → A(a(b(x1)))
A(x1) → C(x1)
A(c(x0)) → B(a(a(b(x0))))
B(a(b(x1))) → C(x1)
The set Q is empty.
We have obtained the following QTRS:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
The set Q is empty.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
A1(x) → C1(b(x))
C1(A(x)) → A1(B(x))
A1(x) → B1(x)
C1(c(x)) → A1(a(x))
C1(c(x)) → A1(x)
C1(A(x)) → A1(a(B(x)))
C1(C(x)) → A1(A(x))
C1(C(x)) → B1(a(A(x)))
C1(c(x)) → B1(a(a(x)))
B1(a(b(x))) → C1(x)
C1(C(x)) → A2(x)
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(x) → C1(b(x))
C1(A(x)) → A1(B(x))
A1(x) → B1(x)
C1(c(x)) → A1(a(x))
C1(c(x)) → A1(x)
C1(A(x)) → A1(a(B(x)))
C1(C(x)) → A1(A(x))
C1(C(x)) → B1(a(A(x)))
C1(c(x)) → B1(a(a(x)))
B1(a(b(x))) → C1(x)
C1(C(x)) → A2(x)
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(x) → C1(b(x))
C1(A(x)) → A1(B(x))
A1(x) → B1(x)
C1(c(x)) → A1(a(x))
C1(c(x)) → A1(x)
C1(A(x)) → A1(a(B(x)))
C1(C(x)) → A1(A(x))
C1(C(x)) → B1(a(A(x)))
B1(a(b(x))) → C1(x)
C1(c(x)) → B1(a(a(x)))
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
C1(A(x)) → A1(B(x))
Used ordering: POLO with Polynomial interpretation [25]:
POL(A(x1)) = 2 + 2·x1
POL(A1(x1)) = 2·x1
POL(B(x1)) = 1 + x1
POL(B1(x1)) = x1
POL(C(x1)) = 2 + 2·x1
POL(C1(x1)) = 2·x1
POL(a(x1)) = 2·x1
POL(b(x1)) = x1
POL(c(x1)) = 2·x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(x) → C1(b(x))
A1(x) → B1(x)
C1(c(x)) → A1(a(x))
C1(c(x)) → A1(x)
C1(C(x)) → A1(A(x))
C1(A(x)) → A1(a(B(x)))
C1(C(x)) → B1(a(A(x)))
C1(c(x)) → B1(a(a(x)))
B1(a(b(x))) → C1(x)
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
A1(x) → B1(x)
C1(c(x)) → A1(x)
Used ordering: POLO with Polynomial interpretation [25]:
POL(A(x1)) = 1 + 2·x1
POL(A1(x1)) = 1 + 2·x1
POL(B(x1)) = x1
POL(B1(x1)) = x1
POL(C(x1)) = 1 + 2·x1
POL(C1(x1)) = 1 + 2·x1
POL(a(x1)) = 1 + 2·x1
POL(b(x1)) = x1
POL(c(x1)) = 1 + 2·x1
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(x) → C1(b(x))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
C1(C(x)) → A1(A(x))
C1(C(x)) → B1(a(A(x)))
B1(a(b(x))) → C1(x)
C1(c(x)) → B1(a(a(x)))
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A1(x) → C1(b(x)) at position [0] we obtained the following new rules:
A1(a(B(x0))) → C1(C(x0))
A1(a(b(x0))) → C1(c(x0))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(C(x)) → A1(A(x))
C1(A(x)) → A1(a(B(x)))
C1(C(x)) → B1(a(A(x)))
A1(a(B(x0))) → C1(C(x0))
C1(c(x)) → B1(a(a(x)))
B1(a(b(x))) → C1(x)
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
C1(C(x)) → B1(a(A(x)))
C1(c(x)) → B1(a(a(x)))
B1(a(b(x))) → C1(x)
A1(a(B(x0))) → C1(C(x0))
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(C(x)) → B1(a(A(x))) at position [0] we obtained the following new rules:
C1(C(y0)) → B1(c(b(A(y0))))
C1(C(x0)) → B1(a(C(x0)))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(C(x0)) → B1(a(C(x0)))
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(C(y0)) → B1(c(b(A(y0))))
C1(A(x)) → A1(a(B(x)))
A1(a(B(x0))) → C1(C(x0))
B1(a(b(x))) → C1(x)
C1(c(x)) → B1(a(a(x)))
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(C(x0)) → B1(a(C(x0)))
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
A1(a(B(x0))) → C1(C(x0))
C1(c(x)) → B1(a(a(x)))
B1(a(b(x))) → C1(x)
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(C(x0)) → B1(a(C(x0))) at position [0] we obtained the following new rules:
C1(C(y0)) → B1(c(b(C(y0))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(a(b(x0))) → C1(c(x0))
C1(C(y0)) → B1(c(b(C(y0))))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
B1(a(b(x))) → C1(x)
C1(c(x)) → B1(a(a(x)))
A1(a(B(x0))) → C1(C(x0))
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
B1(a(b(x))) → C1(x)
C1(c(x)) → B1(a(a(x)))
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(c(x)) → B1(a(a(x))) at position [0] we obtained the following new rules:
C1(c(x0)) → B1(a(c(b(x0))))
C1(c(y0)) → B1(c(b(a(y0))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(c(x0)) → B1(a(c(b(x0))))
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
B1(a(b(x))) → C1(x)
C1(c(y0)) → B1(c(b(a(y0))))
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(c(x0)) → B1(a(c(b(x0))))
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
B1(a(b(x))) → C1(x)
C1(A(x)) → B1(a(a(B(x))))
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(A(x)) → B1(a(a(B(x)))) at position [0] we obtained the following new rules:
C1(A(y0)) → B1(a(c(b(B(y0)))))
C1(A(y0)) → B1(c(b(a(B(y0)))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(A(y0)) → B1(c(b(a(B(y0)))))
C1(A(y0)) → B1(a(c(b(B(y0)))))
A1(a(b(x0))) → C1(c(x0))
C1(c(x0)) → B1(a(c(b(x0))))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
B1(a(b(x))) → C1(x)
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(A(y0)) → B1(a(c(b(B(y0)))))
C1(c(x0)) → B1(a(c(b(x0))))
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
C1(A(x)) → A1(a(B(x)))
B1(a(b(x))) → C1(x)
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(A(x)) → A1(a(B(x))) at position [0] we obtained the following new rules:
C1(A(y0)) → A1(c(b(B(y0))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(a(b(x0))) → C1(c(x0))
C1(c(x0)) → B1(a(c(b(x0))))
C1(A(y0)) → B1(a(c(b(B(y0)))))
C1(c(x)) → A1(a(x))
C1(A(y0)) → A1(c(b(B(y0))))
B1(a(b(x))) → C1(x)
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(A(y0)) → B1(a(c(b(B(y0)))))
C1(c(x0)) → B1(a(c(b(x0))))
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
B1(a(b(x))) → C1(x)
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(A(y0)) → B1(a(c(b(B(y0))))) at position [0] we obtained the following new rules:
C1(A(y0)) → B1(c(b(c(b(B(y0))))))
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A1(a(b(x0))) → C1(c(x0))
C1(c(x0)) → B1(a(c(b(x0))))
C1(c(x)) → A1(a(x))
C1(A(y0)) → B1(c(b(c(b(B(y0))))))
B1(a(b(x))) → C1(x)
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
C1(c(x0)) → B1(a(c(b(x0))))
A1(a(b(x0))) → C1(c(x0))
C1(c(x)) → A1(a(x))
B1(a(b(x))) → C1(x)
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
The set Q is empty.
We have obtained the following QTRS:
a(x) → b(c(x))
b(a(b(x))) → c(x)
c(c(x)) → a(a(b(x)))
C(c(x)) → A(a(b(x)))
A(x) → C(x)
A(c(x)) → B(a(a(b(x))))
B(a(b(x))) → C(x)
The set Q is empty.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → b(c(x))
b(a(b(x))) → c(x)
c(c(x)) → a(a(b(x)))
C(c(x)) → A(a(b(x)))
A(x) → C(x)
A(c(x)) → B(a(a(b(x))))
B(a(b(x))) → C(x)
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
c(C(x)) → b(a(A(x)))
A(x) → C(x)
c(A(x)) → b(a(a(B(x))))
b(a(B(x))) → C(x)
The set Q is empty.
We have obtained the following QTRS:
a(x) → b(c(x))
b(a(b(x))) → c(x)
c(c(x)) → a(a(b(x)))
C(c(x)) → A(a(b(x)))
A(x) → C(x)
A(c(x)) → B(a(a(b(x))))
B(a(b(x))) → C(x)
The set Q is empty.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → b(c(x))
b(a(b(x))) → c(x)
c(c(x)) → a(a(b(x)))
C(c(x)) → A(a(b(x)))
A(x) → C(x)
A(c(x)) → B(a(a(b(x))))
B(a(b(x))) → C(x)
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x1) → b(c(x1))
b(a(b(x1))) → c(x1)
c(c(x1)) → a(a(b(x1)))
The set Q is empty.
We have obtained the following QTRS:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
The set Q is empty.
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → c(b(x))
b(a(b(x))) → c(x)
c(c(x)) → b(a(a(x)))
Q is empty.