a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
C(c(x1)) → A(b(c(a(x1))))
C(c(x1)) → A(x1)
C(c(x1)) → C(a(x1))
A(b(b(x1))) → C(x1)
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
C(c(x1)) → A(b(c(a(x1))))
C(c(x1)) → A(x1)
C(c(x1)) → C(a(x1))
A(b(b(x1))) → C(x1)
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C(c(x1)) → A(x1)
C(c(x1)) → C(a(x1))
Used ordering: Polynomial interpretation [25]:
C(c(x1)) → A(b(c(a(x1))))
A(b(b(x1))) → C(x1)
POL(A(x1)) = 4 + x1
POL(C(x1)) = 8 + x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 2 + x1
POL(c(x1)) = 6 + x1
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
C(c(x1)) → A(b(c(a(x1))))
A(b(b(x1))) → C(x1)
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
C(c(b(b(x0)))) → A(b(c(c(x0))))
C(c(x0)) → A(b(c(b(x0))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
C(c(b(b(x0)))) → A(b(c(c(x0))))
A(b(b(x1))) → C(x1)
C(c(x0)) → A(b(c(b(x0))))
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS Reverse
↳ QTRS Reverse
A(b(b(x1))) → C(x1)
C(c(b(b(x0)))) → A(b(c(c(x0))))
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
A(b(b(x1))) → C(x1)
C(c(b(b(x0)))) → A(b(c(c(x0))))
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
A(b(b(x1))) → C(x1)
C(c(b(b(x0)))) → A(b(c(c(x0))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
C1(c(x)) → A1(c(b(a(x))))
B(b(c(C(x)))) → B(A(x))
C1(c(x)) → C1(b(a(x)))
A1(x) → B(x)
B(b(c(C(x)))) → C1(b(A(x)))
C1(c(x)) → A1(x)
C1(c(x)) → B(a(x))
B(b(a(x))) → C1(x)
B(b(c(C(x)))) → C1(c(b(A(x))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
C1(c(x)) → A1(c(b(a(x))))
B(b(c(C(x)))) → B(A(x))
C1(c(x)) → C1(b(a(x)))
A1(x) → B(x)
B(b(c(C(x)))) → C1(b(A(x)))
C1(c(x)) → A1(x)
C1(c(x)) → B(a(x))
B(b(a(x))) → C1(x)
B(b(c(C(x)))) → C1(c(b(A(x))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
C1(c(x)) → A1(c(b(a(x))))
C1(c(x)) → C1(b(a(x)))
A1(x) → B(x)
C1(c(x)) → A1(x)
C1(c(x)) → B(a(x))
B(b(a(x))) → C1(x)
B(b(c(C(x)))) → C1(c(b(A(x))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C1(c(x)) → C1(b(a(x)))
C1(c(x)) → A1(x)
C1(c(x)) → B(a(x))
Used ordering: Polynomial interpretation [25,35]:
C1(c(x)) → A1(c(b(a(x))))
A1(x) → B(x)
B(b(a(x))) → C1(x)
B(b(c(C(x)))) → C1(c(b(A(x))))
The value of delta used in the strict ordering is 1/4.
POL(C(x1)) = 2
POL(c(x1)) = 3/2 + x_1
POL(A1(x1)) = 7/2 + (1/2)x_1
POL(B(x1)) = 7/2 + (1/2)x_1
POL(a(x1)) = 1/2 + x_1
POL(A(x1)) = 1
POL(b(x1)) = 1/2 + x_1
POL(C1(x1)) = 4 + (1/2)x_1
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(c(C(x)))) → c(c(b(A(x))))
b(b(A(x))) → C(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
C1(c(x)) → A1(c(b(a(x))))
A1(x) → B(x)
B(b(a(x))) → C1(x)
B(b(c(C(x)))) → C1(c(b(A(x))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C1(c(x)) → C1(b(a(x)))
C1(c(x)) → A1(x)
C1(c(x)) → B(a(x))
Used ordering: Polynomial interpretation [25]:
C1(c(x)) → A1(c(b(a(x))))
A1(x) → B(x)
B(b(a(x))) → C1(x)
B(b(c(C(x)))) → C1(c(b(A(x))))
POL(A(x1)) = 0
POL(A1(x1)) = 8 + x1
POL(B(x1)) = 8 + x1
POL(C(x1)) = 3
POL(C1(x1)) = 11 + 4·x1
POL(a(x1)) = 1 + 2·x1
POL(b(x1)) = 1 + 2·x1
POL(c(x1)) = 7 + 8·x1
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(c(C(x)))) → c(c(b(A(x))))
b(b(A(x))) → C(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
C1(c(x)) → A1(c(b(a(x))))
A1(x) → B(x)
B(b(a(x))) → C1(x)
B(b(c(C(x)))) → C1(c(b(A(x))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
a(x) → b(x)
a(b(b(x))) → c(x)
c(c(x)) → a(b(c(a(x))))
A(b(b(x))) → C(x)
C(c(b(b(x)))) → A(b(c(c(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
a(x) → b(x)
a(b(b(x))) → c(x)
c(c(x)) → a(b(c(a(x))))
A(b(b(x))) → C(x)
C(c(b(b(x)))) → A(b(c(c(x))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
b(b(A(x))) → C(x)
b(b(c(C(x)))) → c(c(b(A(x))))
a(x) → b(x)
a(b(b(x))) → c(x)
c(c(x)) → a(b(c(a(x))))
A(b(b(x))) → C(x)
C(c(b(b(x)))) → A(b(c(c(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
a(x) → b(x)
a(b(b(x))) → c(x)
c(c(x)) → a(b(c(a(x))))
A(b(b(x))) → C(x)
C(c(b(b(x)))) → A(b(c(c(x))))
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
a(x1) → b(x1)
a(b(b(x1))) → c(x1)
c(c(x1)) → a(b(c(a(x1))))
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
a(x) → b(x)
b(b(a(x))) → c(x)
c(c(x)) → a(c(b(a(x))))