Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(x1)
a(x1) → c(x1)
a(b(x1)) → b(a(c(x1)))
c(c(x1)) → a(x1)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(x1)
a(x1) → c(x1)
a(b(x1)) → b(a(c(x1)))
c(c(x1)) → a(x1)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

C(c(x1)) → A(x1)
A(x1) → C(x1)
A(b(x1)) → A(c(x1))
A(b(x1)) → C(x1)

The TRS R consists of the following rules:

a(x1) → b(x1)
a(x1) → c(x1)
a(b(x1)) → b(a(c(x1)))
c(c(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP

Q DP problem:
The TRS P consists of the following rules:

C(c(x1)) → A(x1)
A(x1) → C(x1)
A(b(x1)) → A(c(x1))
A(b(x1)) → C(x1)

The TRS R consists of the following rules:

a(x1) → b(x1)
a(x1) → c(x1)
a(b(x1)) → b(a(c(x1)))
c(c(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.