Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(c(x1)) → A(x1)
A(b(b(x1))) → A(x1)
A(b(b(x1))) → B(b(b(c(a(x1)))))
A(b(b(x1))) → B(b(c(a(x1))))
A(b(b(x1))) → B(c(a(x1)))

The TRS R consists of the following rules:

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(c(x1)) → A(x1)
A(b(b(x1))) → A(x1)
A(b(b(x1))) → B(b(b(c(a(x1)))))
A(b(b(x1))) → B(b(c(a(x1))))
A(b(b(x1))) → B(c(a(x1)))

The TRS R consists of the following rules:

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(b(x1))) → B(b(b(c(a(x1))))) at position [0] we obtained the following new rules:

A(b(b(x0))) → B(b(b(c(x0))))
A(b(b(b(b(x0))))) → B(b(b(c(b(b(b(c(a(x0)))))))))
A(b(b(y0))) → B(b(a(a(y0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
QDP
          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(b(x0))) → B(b(b(c(x0))))
A(b(b(x1))) → A(x1)
B(c(x1)) → A(x1)
A(b(b(x1))) → B(b(c(a(x1))))
A(b(b(x1))) → B(c(a(x1)))
A(b(b(y0))) → B(b(a(a(y0))))
A(b(b(b(b(x0))))) → B(b(b(c(b(b(b(c(a(x0)))))))))

The TRS R consists of the following rules:

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(b(x1))) → B(b(c(a(x1)))) at position [0] we obtained the following new rules:

A(b(b(b(b(x0))))) → B(b(c(b(b(b(c(a(x0))))))))
A(b(b(y0))) → B(a(a(y0)))
A(b(b(x0))) → B(b(c(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(b(b(b(x0))))) → B(b(c(b(b(b(c(a(x0))))))))
B(c(x1)) → A(x1)
A(b(b(x1))) → A(x1)
A(b(b(x0))) → B(b(b(c(x0))))
A(b(b(y0))) → B(a(a(y0)))
A(b(b(x0))) → B(b(c(x0)))
A(b(b(x1))) → B(c(a(x1)))
A(b(b(b(b(x0))))) → B(b(b(c(b(b(b(c(a(x0)))))))))
A(b(b(y0))) → B(b(a(a(y0))))

The TRS R consists of the following rules:

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
QTRS
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)
A(b(b(b(b(x0))))) → B(b(c(b(b(b(c(a(x0))))))))
B(c(x1)) → A(x1)
A(b(b(x1))) → A(x1)
A(b(b(x0))) → B(b(b(c(x0))))
A(b(b(y0))) → B(a(a(y0)))
A(b(b(x0))) → B(b(c(x0)))
A(b(b(x1))) → B(c(a(x1)))
A(b(b(b(b(x0))))) → B(b(b(c(b(b(b(c(a(x0)))))))))
A(b(b(y0))) → B(b(a(a(y0))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)
A(b(b(b(b(x0))))) → B(b(c(b(b(b(c(a(x0))))))))
B(c(x1)) → A(x1)
A(b(b(x1))) → A(x1)
A(b(b(x0))) → B(b(b(c(x0))))
A(b(b(y0))) → B(a(a(y0)))
A(b(b(x0))) → B(b(c(x0)))
A(b(b(x1))) → B(c(a(x1)))
A(b(b(b(b(x0))))) → B(b(b(c(b(b(b(c(a(x0)))))))))
A(b(b(y0))) → B(b(a(a(y0))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(b(x))) → b(b(b(c(a(x)))))
b(c(x)) → a(x)
A(b(b(b(b(x))))) → B(b(c(b(b(b(c(a(x))))))))
B(c(x)) → A(x)
A(b(b(x))) → A(x)
A(b(b(x))) → B(b(b(c(x))))
A(b(b(x))) → B(a(a(x)))
A(b(b(x))) → B(b(c(x)))
A(b(b(x))) → B(c(a(x)))
A(b(b(b(b(x))))) → B(b(b(c(b(b(b(c(a(x)))))))))
A(b(b(x))) → B(b(a(a(x))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
QTRS
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(b(x))) → b(b(b(c(a(x)))))
b(c(x)) → a(x)
A(b(b(b(b(x))))) → B(b(c(b(b(b(c(a(x))))))))
B(c(x)) → A(x)
A(b(b(x))) → A(x)
A(b(b(x))) → B(b(b(c(x))))
A(b(b(x))) → B(a(a(x)))
A(b(b(x))) → B(b(c(x)))
A(b(b(x))) → B(c(a(x)))
A(b(b(b(b(x))))) → B(b(b(c(b(b(b(c(a(x)))))))))
A(b(b(x))) → B(b(a(a(x))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(b(x))) → b(b(b(c(a(x)))))
b(c(x)) → a(x)
A(b(b(b(b(x))))) → B(b(c(b(b(b(c(a(x))))))))
B(c(x)) → A(x)
A(b(b(x))) → A(x)
A(b(b(x))) → B(b(b(c(x))))
A(b(b(x))) → B(a(a(x)))
A(b(b(x))) → B(b(c(x)))
A(b(b(x))) → B(c(a(x)))
A(b(b(b(b(x))))) → B(b(b(c(b(b(b(c(a(x)))))))))
A(b(b(x))) → B(b(a(a(x))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
QTRS
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(b(x))) → b(b(b(c(a(x)))))
b(c(x)) → a(x)
A(b(b(b(b(x))))) → B(b(c(b(b(b(c(a(x))))))))
B(c(x)) → A(x)
A(b(b(x))) → A(x)
A(b(b(x))) → B(b(b(c(x))))
A(b(b(x))) → B(a(a(x)))
A(b(b(x))) → B(b(c(x)))
A(b(b(x))) → B(c(a(x)))
A(b(b(b(b(x))))) → B(b(b(c(b(b(b(c(a(x)))))))))
A(b(b(x))) → B(b(a(a(x))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B1(b(A(x))) → A1(a(b(B(x))))
B1(b(a(x))) → C(b(b(b(x))))
B1(b(b(b(A(x))))) → B1(B(x))
B1(b(b(b(A(x))))) → B1(b(c(b(B(x)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(b(b(A(x))))) → C(b(b(b(c(b(b(B(x))))))))
B1(b(A(x))) → A1(a(B(x)))
B1(b(A(x))) → C(b(B(x)))
B1(b(b(b(A(x))))) → B1(b(b(c(b(b(B(x)))))))
B1(b(b(b(A(x))))) → C(b(b(b(c(b(B(x)))))))
B1(b(a(x))) → A1(c(b(b(b(x)))))
B1(b(A(x))) → C(B(x))
B1(b(A(x))) → C(b(b(B(x))))
B1(b(b(b(A(x))))) → A1(c(b(b(b(c(b(b(B(x)))))))))
B1(b(A(x))) → B1(b(B(x)))
B1(b(A(x))) → B1(B(x))
B1(b(b(b(A(x))))) → C(b(B(x)))
B1(b(A(x))) → A1(b(B(x)))
B1(b(A(x))) → A1(B(x))
C(b(x)) → A1(x)
B1(b(A(x))) → A1(c(B(x)))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(x))))) → B1(b(B(x)))
B1(b(a(x))) → B1(b(x))
B1(b(b(b(A(x))))) → B1(c(b(B(x))))
B1(b(b(b(A(x))))) → A1(c(b(b(b(c(b(B(x))))))))
B1(b(b(b(A(x))))) → B1(b(b(c(b(B(x))))))
B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x))))))
B1(b(b(b(A(x))))) → C(b(b(B(x))))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
QDP
                          ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(A(x))) → A1(a(b(B(x))))
B1(b(a(x))) → C(b(b(b(x))))
B1(b(b(b(A(x))))) → B1(B(x))
B1(b(b(b(A(x))))) → B1(b(c(b(B(x)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(b(b(A(x))))) → C(b(b(b(c(b(b(B(x))))))))
B1(b(A(x))) → A1(a(B(x)))
B1(b(A(x))) → C(b(B(x)))
B1(b(b(b(A(x))))) → B1(b(b(c(b(b(B(x)))))))
B1(b(b(b(A(x))))) → C(b(b(b(c(b(B(x)))))))
B1(b(a(x))) → A1(c(b(b(b(x)))))
B1(b(A(x))) → C(B(x))
B1(b(A(x))) → C(b(b(B(x))))
B1(b(b(b(A(x))))) → A1(c(b(b(b(c(b(b(B(x)))))))))
B1(b(A(x))) → B1(b(B(x)))
B1(b(A(x))) → B1(B(x))
B1(b(b(b(A(x))))) → C(b(B(x)))
B1(b(A(x))) → A1(b(B(x)))
B1(b(A(x))) → A1(B(x))
C(b(x)) → A1(x)
B1(b(A(x))) → A1(c(B(x)))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(x))))) → B1(b(B(x)))
B1(b(a(x))) → B1(b(x))
B1(b(b(b(A(x))))) → B1(c(b(B(x))))
B1(b(b(b(A(x))))) → A1(c(b(b(b(c(b(B(x))))))))
B1(b(b(b(A(x))))) → B1(b(b(c(b(B(x))))))
B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x))))))
B1(b(b(b(A(x))))) → C(b(b(B(x))))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 21 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(x))))) → B1(b(b(c(b(b(B(x)))))))
B1(b(b(b(A(x))))) → B1(c(b(B(x))))
B1(b(b(b(A(x))))) → B1(b(c(b(B(x)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(b(b(A(x))))) → B1(b(b(c(b(B(x))))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x))))))
B1(b(a(x))) → B1(b(x))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(x))))) → B1(b(b(c(b(B(x)))))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
QDP
                                  ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(x))))) → B1(c(b(B(x))))
B1(b(b(b(A(x))))) → B1(b(b(c(b(b(B(x)))))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(x))))) → B1(b(c(b(B(x)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x))))))
B1(b(a(x))) → B1(b(x))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(x))))) → B1(b(c(b(B(x))))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
QDP
                                      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(x))))) → B1(b(b(c(b(b(B(x)))))))
B1(b(b(b(A(x))))) → B1(c(b(B(x))))
B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x))))))
B1(b(a(x))) → B1(b(x))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(x))))) → B1(c(b(B(x)))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(a(B(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
QDP
                                          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(x))))) → B1(b(b(c(b(b(B(x)))))))
B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x))))))
B1(b(a(x))) → B1(b(x))
B1(b(b(b(A(y0))))) → B1(a(B(y0)))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(x))))) → B1(b(b(c(b(b(B(x))))))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
QDP
                                              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x))))))
B1(b(a(x))) → B1(b(x))
B1(b(b(b(A(y0))))) → B1(a(B(y0)))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(x))))) → B1(b(c(b(b(B(x)))))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(b(a(b(B(y0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
QDP
                                                  ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(a(b(B(y0)))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(x))))) → B1(c(b(b(B(x)))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))
B1(b(a(x))) → B1(b(x))
B1(b(b(b(A(y0))))) → B1(a(B(y0)))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(x))))) → B1(c(b(b(B(x))))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(a(b(B(y0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(a(b(B(y0)))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(y0))))) → B1(a(b(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))
B1(b(a(x))) → B1(x)
B1(b(a(x))) → B1(b(x))
B1(b(b(b(A(y0))))) → B1(a(B(y0)))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(y0))))) → B1(a(B(y0))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(B(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ Narrowing
QDP
                                                          ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(a(b(B(y0)))))
B1(b(b(b(A(y0))))) → B1(B(y0))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(y0))))) → B1(a(b(B(y0))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))
B1(b(a(x))) → B1(b(x))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
QDP
                                                              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(a(b(B(y0)))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(y0))))) → B1(a(b(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))
B1(b(a(x))) → B1(x)
B1(b(a(x))) → B1(b(x))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(A(y0))))) → B1(a(b(B(y0)))) at position [0] we obtained the following new rules:

B1(b(b(b(A(y0))))) → B1(b(B(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
QDP
                                                                  ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(a(b(B(y0)))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(a(x))) → B1(x)
B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))
B1(b(b(b(A(y0))))) → B1(b(B(y0)))
B1(b(a(x))) → B1(b(x))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
QDP
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(b(A(y0))))) → B1(b(a(B(y0))))
B1(b(b(b(A(y0))))) → B1(b(a(b(B(y0)))))
B1(b(b(b(A(y0))))) → B1(b(b(a(B(y0)))))
B1(b(b(b(A(y0))))) → B1(b(b(a(b(B(y0))))))
B1(b(a(x))) → B1(x)
B1(b(a(x))) → B1(b(x))
B1(b(a(x))) → B1(b(b(x)))

The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(B(x))))))))
c(B(x)) → A(x)
b(b(A(x))) → A(x)
b(b(A(x))) → c(b(b(B(x))))
b(b(A(x))) → a(a(B(x)))
b(b(A(x))) → c(b(B(x)))
b(b(A(x))) → a(c(B(x)))
b(b(b(b(A(x))))) → a(c(b(b(b(c(b(b(B(x)))))))))
b(b(A(x))) → a(a(b(B(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(b(x1))) → b(b(b(c(a(x1)))))
b(c(x1)) → a(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(b(a(x))) → a(c(b(b(b(x)))))
c(b(x)) → a(x)

Q is empty.