Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
Q is empty.
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
A(b(x1)) → B(b(a(a(x1))))
A(b(x1)) → C(b(b(a(a(x1)))))
A(b(x1)) → B(a(a(x1)))
A(b(x1)) → A(a(x1))
A(b(x1)) → A(x1)
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A(b(x1)) → B(b(a(a(x1))))
A(b(x1)) → C(b(b(a(a(x1)))))
A(b(x1)) → B(a(a(x1)))
A(b(x1)) → A(a(x1))
A(b(x1)) → A(x1)
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A(b(x1)) → A(a(x1))
A(b(x1)) → A(x1)
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → A(a(x1)) at position [0] we obtained the following new rules:
A(b(b(x0))) → A(c(b(b(a(a(x0))))))
A(b(x0)) → A(x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
A(b(b(x0))) → A(c(b(b(a(a(x0))))))
A(b(x1)) → A(x1)
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
A(b(b(x0))) → A(c(b(b(a(a(x0))))))
A(b(x1)) → A(x1)
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
A(b(b(x0))) → A(c(b(b(a(a(x0))))))
A(b(x1)) → A(x1)
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
The set Q is empty.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
B(b(A(x))) → B(b(c(A(x))))
B(b(A(x))) → A1(a(b(b(c(A(x))))))
B(a(x)) → A1(a(b(b(c(x)))))
B(b(A(x))) → C(A(x))
B(a(x)) → B(b(c(x)))
B(b(A(x))) → B(c(A(x)))
B(a(x)) → B(c(x))
B(a(x)) → C(x)
B(a(x)) → A1(b(b(c(x))))
B(b(A(x))) → A1(b(b(c(A(x)))))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(b(A(x))) → B(b(c(A(x))))
B(b(A(x))) → A1(a(b(b(c(A(x))))))
B(a(x)) → A1(a(b(b(c(x)))))
B(b(A(x))) → C(A(x))
B(a(x)) → B(b(c(x)))
B(b(A(x))) → B(c(A(x)))
B(a(x)) → B(c(x))
B(a(x)) → C(x)
B(a(x)) → A1(b(b(c(x))))
B(b(A(x))) → A1(b(b(c(A(x)))))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 8 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(a(x)) → B(b(c(x)))
B(a(x)) → B(c(x))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(a(x)) → B(c(x)) at position [0] we obtained the following new rules:
B(a(c(x0))) → B(x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(a(c(x0))) → B(x0)
B(a(x)) → B(b(c(x)))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(a(x)) → B(b(c(x))) at position [0] we obtained the following new rules:
B(a(c(x0))) → B(b(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(a(c(x0))) → B(x0)
B(a(c(x0))) → B(b(x0))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
a(b(x)) → c(b(b(a(a(x)))))
b(b(x)) → x
c(c(x)) → x
A(b(b(x))) → A(c(b(b(a(a(x))))))
A(b(x)) → A(x)
The set Q is empty.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
a(b(x)) → c(b(b(a(a(x)))))
b(b(x)) → x
c(c(x)) → x
A(b(b(x))) → A(c(b(b(a(a(x))))))
A(b(x)) → A(x)
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
b(b(A(x))) → a(a(b(b(c(A(x))))))
b(A(x)) → A(x)
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
a(b(x)) → c(b(b(a(a(x)))))
b(b(x)) → x
c(c(x)) → x
A(b(b(x))) → A(c(b(b(a(a(x))))))
A(b(x)) → A(x)
The set Q is empty.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
a(b(x)) → c(b(b(a(a(x)))))
b(b(x)) → x
c(c(x)) → x
A(b(b(x))) → A(c(b(b(a(a(x))))))
A(b(x)) → A(x)
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
The set Q is empty.
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
Q is empty.
We have reversed the following QTRS:
The set of rules R is
a(x1) → x1
a(b(x1)) → c(b(b(a(a(x1)))))
b(b(x1)) → x1
c(c(x1)) → x1
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
The set Q is empty.
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(a(b(b(c(x)))))
b(b(x)) → x
c(c(x)) → x
Q is empty.