Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
Q is empty.
↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
B(c(c(x1))) → A(x1)
A(b(x1)) → B(c(a(x1)))
B(c(c(x1))) → B(a(x1))
A(b(x1)) → A(x1)
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(c(c(x1))) → A(x1)
A(b(x1)) → B(c(a(x1)))
B(c(c(x1))) → B(a(x1))
A(b(x1)) → A(x1)
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
A(b(x1)) → B(c(a(x1)))
A(b(x1)) → A(x1)
Used ordering: POLO with Polynomial interpretation [25]:
POL(A(x1)) = x1   
POL(B(x1)) = 2·x1   
POL(a(x1)) = x1   
POL(b(x1)) = 1 + 2·x1   
POL(c(x1)) = x1   
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(c(c(x1))) → A(x1)
B(c(c(x1))) → B(a(x1))
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(c(c(x1))) → B(a(x1))
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(c(c(x1))) → B(a(x1)) at position [0] we obtained the following new rules:
B(c(c(b(x0)))) → B(b(c(a(x0))))
B(c(c(x0))) → B(x0)
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B(c(c(x0))) → B(x0)
B(c(c(b(x0)))) → B(b(c(a(x0))))
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
B(c(c(x0))) → B(x0)
B(c(c(b(x0)))) → B(b(c(a(x0))))
Q is empty.
We have reversed the following QTRS:
The set of rules R is 
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
B(c(c(x0))) → B(x0)
B(c(c(b(x0)))) → B(b(c(a(x0))))
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
The set Q is empty.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have reversed the following QTRS:
The set of rules R is 
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
a(b(x)) → b(c(a(x)))
b(c(c(x))) → c(b(a(x)))
B(c(c(x))) → B(x)
B(c(c(b(x)))) → B(b(c(a(x))))
The set Q is empty.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                          ↳ DependencyPairsProof
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
a(b(x)) → b(c(a(x)))
b(c(c(x))) → c(b(a(x)))
B(c(c(x))) → B(x)
B(c(c(b(x)))) → B(b(c(a(x))))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
C(c(b(x))) → B1(c(x))
C(c(b(x))) → A(b(c(x)))
B1(a(x)) → C(b(x))
B1(c(c(B(x)))) → B1(B(x))
B1(c(c(B(x)))) → A(c(b(B(x))))
C(c(b(x))) → C(x)
B1(c(c(B(x)))) → C(b(B(x)))
B1(a(x)) → A(c(b(x)))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
C(c(b(x))) → B1(c(x))
C(c(b(x))) → A(b(c(x)))
B1(a(x)) → C(b(x))
B1(c(c(B(x)))) → B1(B(x))
B1(c(c(B(x)))) → A(c(b(B(x))))
C(c(b(x))) → C(x)
B1(c(c(B(x)))) → C(b(B(x)))
B1(a(x)) → A(c(b(x)))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
C(c(b(x))) → B1(c(x))
B1(a(x)) → C(b(x))
C(c(b(x))) → C(x)
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
C(c(b(x))) → C(x)
Used ordering: POLO with Polynomial interpretation [25]:
POL(B(x1)) = 2·x1   
POL(B1(x1)) = 2 + 2·x1   
POL(C(x1)) = x1   
POL(a(x1)) = x1   
POL(b(x1)) = 2 + 2·x1   
POL(c(x1)) = x1   
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
                                    ↳ QDP
                                      ↳ Narrowing
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
B1(a(x)) → C(b(x))
C(c(b(x))) → B1(c(x))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(c(b(x))) → B1(c(x)) at position [0] we obtained the following new rules:
C(c(b(c(B(x0))))) → B1(B(x0))
C(c(b(c(b(x0))))) → B1(a(b(c(x0))))
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
C(c(b(c(b(x0))))) → B1(a(b(c(x0))))
C(c(b(c(B(x0))))) → B1(B(x0))
B1(a(x)) → C(b(x))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
C(c(b(c(b(x0))))) → B1(a(b(c(x0))))
B1(a(x)) → C(b(x))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(a(x)) → C(b(x)) at position [0] we obtained the following new rules:
B1(a(a(x0))) → C(a(c(b(x0))))
B1(a(c(c(B(x0))))) → C(a(c(b(B(x0)))))
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(c(c(B(x0))))) → C(a(c(b(B(x0)))))
B1(a(x)) → B1(x)
C(c(b(c(b(x0))))) → B1(a(b(c(x0))))
B1(a(a(x0))) → C(a(c(b(x0))))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(a(c(c(B(x0))))) → C(a(c(b(B(x0))))) at position [0] we obtained the following new rules:
B1(a(c(c(B(y0))))) → C(c(b(B(y0))))
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
B1(a(c(c(B(y0))))) → C(c(b(B(y0))))
C(c(b(c(b(x0))))) → B1(a(b(c(x0))))
B1(a(a(x0))) → C(a(c(b(x0))))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q DP problem:
The TRS P consists of the following rules:
B1(a(x)) → B1(x)
C(c(b(c(b(x0))))) → B1(a(b(c(x0))))
B1(a(a(x0))) → C(a(c(b(x0))))
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is 
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
c(c(B(x))) → B(x)
b(c(c(B(x)))) → a(c(b(B(x))))
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
a(b(x)) → b(c(a(x)))
b(c(c(x))) → c(b(a(x)))
B(c(c(x))) → B(x)
B(c(c(b(x)))) → B(b(c(a(x))))
The set Q is empty.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ QTRS Reverse
                          ↳ DependencyPairsProof
                          ↳ QTRS Reverse
                            ↳ QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
a(b(x)) → b(c(a(x)))
b(c(c(x))) → c(b(a(x)))
B(c(c(x))) → B(x)
B(c(c(b(x)))) → B(b(c(a(x))))
Q is empty.
We have reversed the following QTRS:
The set of rules R is 
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
The set Q is empty.
↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
    ↳ QTRS
  ↳ QTRS Reverse
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
Q is empty.
We have reversed the following QTRS:
The set of rules R is 
a(x1) → x1
a(b(x1)) → b(c(a(x1)))
b(c(c(x1))) → c(b(a(x1)))
The set Q is empty.
We have obtained the following QTRS:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
The set Q is empty.
↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
    ↳ QTRS
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
b(a(x)) → a(c(b(x)))
c(c(b(x))) → a(b(c(x)))
Q is empty.