Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(a(c(x1))))
B(x1) → A(c(x1))
A(b(x1)) → A(c(x1))
B(x1) → C(x1)
A(b(x1)) → C(x1)
A(b(x1)) → B(a(c(x1)))

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(a(c(x1))))
B(x1) → A(c(x1))
A(b(x1)) → A(c(x1))
B(x1) → C(x1)
A(b(x1)) → C(x1)
A(b(x1)) → B(a(c(x1)))

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(a(c(x1))))
B(x1) → A(c(x1))
A(b(x1)) → A(c(x1))
A(b(x1)) → B(a(c(x1)))

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(x1) → A(c(x1)) at position [0] we obtained the following new rules:

B(c(x0)) → A(x0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(a(c(x1))))
B(c(x0)) → A(x0)
A(b(x1)) → A(c(x1))
A(b(x1)) → B(a(c(x1)))

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → A(c(x1)) at position [0] we obtained the following new rules:

A(b(c(x0))) → A(x0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
QDP
                  ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(a(c(x1))))
B(c(x0)) → A(x0)
A(b(x1)) → B(a(c(x1)))
A(b(c(x0))) → A(x0)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → B(b(a(c(x1)))) at position [0] we obtained the following new rules:

A(b(c(x0))) → B(b(a(x0)))
A(b(y0)) → B(b(c(y0)))
A(b(y0)) → B(a(c(a(c(y0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
QDP
                      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(c(x0))) → B(b(a(x0)))
A(b(y0)) → B(a(c(a(c(y0)))))
A(b(y0)) → B(b(c(y0)))
B(c(x0)) → A(x0)
A(b(x1)) → B(a(c(x1)))
A(b(c(x0))) → A(x0)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → B(a(c(x1))) at position [0] we obtained the following new rules:

A(b(c(x0))) → B(a(x0))
A(b(y0)) → B(c(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
QDP
                          ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(c(x0))) → B(b(a(x0)))
B(c(x0)) → A(x0)
A(b(y0)) → B(b(c(y0)))
A(b(y0)) → B(a(c(a(c(y0)))))
A(b(y0)) → B(c(y0))
A(b(c(x0))) → B(a(x0))
A(b(c(x0))) → A(x0)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
QTRS
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1
A(b(c(x0))) → B(b(a(x0)))
B(c(x0)) → A(x0)
A(b(y0)) → B(b(c(y0)))
A(b(y0)) → B(a(c(a(c(y0)))))
A(b(y0)) → B(c(y0))
A(b(c(x0))) → B(a(x0))
A(b(c(x0))) → A(x0)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1
A(b(c(x0))) → B(b(a(x0)))
B(c(x0)) → A(x0)
A(b(y0)) → B(b(c(y0)))
A(b(y0)) → B(a(c(a(c(y0)))))
A(b(y0)) → B(c(y0))
A(b(c(x0))) → B(a(x0))
A(b(c(x0))) → A(x0)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
QTRS
                                  ↳ DependencyPairsProof
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B1(A(x)) → C(a(B(x)))
C(b(A(x))) → B1(B(x))
B1(a(x)) → B1(x)
B1(A(x)) → B1(B(x))
B1(A(x)) → A1(c(a(B(x))))
B1(A(x)) → C(b(B(x)))
B1(a(x)) → C(a(b(b(x))))
B1(a(x)) → B1(b(x))
B1(A(x)) → C(B(x))
B1(x) → C(a(x))
B1(A(x)) → C(a(c(a(B(x)))))
B1(A(x)) → A1(B(x))
C(b(A(x))) → A1(B(x))
B1(x) → A1(x)
B1(a(x)) → A1(b(b(x)))
C(b(A(x))) → A1(b(B(x)))

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
QDP
                                      ↳ DependencyGraphProof
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(A(x)) → C(a(B(x)))
C(b(A(x))) → B1(B(x))
B1(a(x)) → B1(x)
B1(A(x)) → B1(B(x))
B1(A(x)) → A1(c(a(B(x))))
B1(A(x)) → C(b(B(x)))
B1(a(x)) → C(a(b(b(x))))
B1(a(x)) → B1(b(x))
B1(A(x)) → C(B(x))
B1(x) → C(a(x))
B1(A(x)) → C(a(c(a(B(x)))))
B1(A(x)) → A1(B(x))
C(b(A(x))) → A1(B(x))
B1(x) → A1(x)
B1(a(x)) → A1(b(b(x)))
C(b(A(x))) → A1(b(B(x)))

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 12 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
QDP
                                            ↳ UsableRulesProof
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(A(x))) → B1(B(x))
B1(x) → C(a(x))

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ MNOCProof
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(x) → C(a(x))
C(b(A(x))) → B1(B(x))

The TRS R consists of the following rules:

a(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [15] to enlarge Q to all left-hand sides of R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ MNOCProof
QDP
                                                    ↳ UsableRulesReductionPairsProof
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(A(x))) → B1(B(x))
B1(x) → C(a(x))

The TRS R consists of the following rules:

a(x) → x

The set Q consists of the following terms:

a(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

C(b(A(x))) → B1(B(x))
B1(x) → C(a(x))
The following rules are removed from R:

a(x) → x
Used ordering: POLO with Polynomial interpretation [25]:

POL(A(x1)) = 1 + 2·x1   
POL(B(x1)) = x1   
POL(B1(x1)) = 2 + 2·x1   
POL(C(x1)) = x1   
POL(a(x1)) = 1 + x1   
POL(b(x1)) = 2·x1   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ MNOCProof
                                                  ↳ QDP
                                                    ↳ UsableRulesReductionPairsProof
QDP
                                                        ↳ PisEmptyProof
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

a(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                            ↳ UsableRulesProof
QDP
                                                ↳ MNOCProof
                                          ↳ QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(x) → C(a(x))
C(b(A(x))) → B1(B(x))

The TRS R consists of the following rules:

a(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [15] to enlarge Q to all left-hand sides of R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ MNOCProof
QDP
                                                    ↳ MNOCProof
                                          ↳ QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(A(x))) → B1(B(x))
B1(x) → C(a(x))

The TRS R consists of the following rules:

a(x) → x

The set Q consists of the following terms:

a(x0)

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ MNOCProof
                                                  ↳ QDP
                                                    ↳ MNOCProof
QDP
                                          ↳ QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(x) → C(a(x))
C(b(A(x))) → B1(B(x))

The TRS R consists of the following rules:

a(x) → x

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
QDP
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → B1(b(x))
B1(a(x)) → B1(x)

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(x)) → b(b(a(c(x))))
b(x) → a(c(x))
c(c(x)) → x
A(b(c(x))) → B(b(a(x)))
B(c(x)) → A(x)
A(b(x)) → B(b(c(x)))
A(b(x)) → B(a(c(a(c(x)))))
A(b(x)) → B(c(x))
A(b(c(x))) → B(a(x))
A(b(c(x))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                  ↳ QTRS Reverse
QTRS
                                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(x)) → b(b(a(c(x))))
b(x) → a(c(x))
c(c(x)) → x
A(b(c(x))) → B(b(a(x)))
B(c(x)) → A(x)
A(b(x)) → B(b(c(x)))
A(b(x)) → B(a(c(a(c(x)))))
A(b(x)) → B(c(x))
A(b(c(x))) → B(a(x))
A(b(c(x))) → A(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x
c(b(A(x))) → a(b(B(x)))
c(B(x)) → A(x)
b(A(x)) → c(b(B(x)))
b(A(x)) → c(a(c(a(B(x)))))
b(A(x)) → c(B(x))
c(b(A(x))) → a(B(x))
c(b(A(x))) → A(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(x)) → b(b(a(c(x))))
b(x) → a(c(x))
c(c(x)) → x
A(b(c(x))) → B(b(a(x)))
B(c(x)) → A(x)
A(b(x)) → B(b(c(x)))
A(b(x)) → B(a(c(a(c(x)))))
A(b(x)) → B(c(x))
A(b(c(x))) → B(a(x))
A(b(c(x))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(x)) → b(b(a(c(x))))
b(x) → a(c(x))
c(c(x)) → x
A(b(c(x))) → B(b(a(x)))
B(c(x)) → A(x)
A(b(x)) → B(b(c(x)))
A(b(x)) → B(a(c(a(c(x)))))
A(b(x)) → B(c(x))
A(b(c(x))) → B(a(x))
A(b(c(x))) → A(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(x1)) → b(b(a(c(x1))))
b(x1) → a(c(x1))
c(c(x1)) → x1

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → c(a(x))
c(c(x)) → x

Q is empty.