Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(a(c(x1))) → c(c(a(b(a(x1)))))
c(x1) → x1

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(a(c(x1))) → c(c(a(b(a(x1)))))
c(x1) → x1

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(a(c(x1))) → A(b(a(x1)))
B(a(c(x1))) → C(c(a(b(a(x1)))))
A(x1) → B(x1)
B(a(c(x1))) → A(x1)
B(a(c(x1))) → C(a(b(a(x1))))
B(a(c(x1))) → B(a(x1))

The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(a(c(x1))) → c(c(a(b(a(x1)))))
c(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

B(a(c(x1))) → A(b(a(x1)))
B(a(c(x1))) → C(c(a(b(a(x1)))))
A(x1) → B(x1)
B(a(c(x1))) → A(x1)
B(a(c(x1))) → C(a(b(a(x1))))
B(a(c(x1))) → B(a(x1))

The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(a(c(x1))) → c(c(a(b(a(x1)))))
c(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

B(a(c(x1))) → A(b(a(x1)))
A(x1) → B(x1)
B(a(c(x1))) → A(x1)
B(a(c(x1))) → B(a(x1))

The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(a(c(x1))) → c(c(a(b(a(x1)))))
c(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.