Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → A(c(a(x1)))
A(b(x1)) → C(a(x1))
A(b(x1)) → A(a(c(a(x1))))
A(b(x1)) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → A(c(a(x1)))
A(b(x1)) → C(a(x1))
A(b(x1)) → A(a(c(a(x1))))
A(b(x1)) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → A(c(a(x1)))
A(b(x1)) → A(a(c(a(x1))))
A(b(x1)) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → A(c(a(x1))) at position [0] we obtained the following new rules:

A(b(x0)) → A(c(x0))
A(b(b(x0))) → A(c(b(b(a(a(c(a(x0))))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(b(x0))) → A(c(b(b(a(a(c(a(x0))))))))
A(b(x0)) → A(c(x0))
A(b(x1)) → A(a(c(a(x1))))
A(b(x1)) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x0)) → A(c(x0))
A(b(x1)) → A(a(c(a(x1))))
A(b(x1)) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → A(a(c(a(x1)))) at position [0] we obtained the following new rules:

A(b(y0)) → A(c(a(y0)))
A(b(b(x0))) → A(a(c(b(b(a(a(c(a(x0)))))))))
A(b(x0)) → A(a(c(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
QDP
                      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(y0)) → A(c(a(y0)))
A(b(b(x0))) → A(a(c(b(b(a(a(c(a(x0)))))))))
A(b(x0)) → A(c(x0))
A(b(x0)) → A(a(c(x0)))
A(b(x1)) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x0)) → A(c(x0)) at position [0] we obtained the following new rules:

A(b(c(b(x0)))) → A(x0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
QDP
                          ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(c(b(x0)))) → A(x0)
A(b(y0)) → A(c(a(y0)))
A(b(b(x0))) → A(a(c(b(b(a(a(c(a(x0)))))))))
A(b(x1)) → A(x1)
A(b(x0)) → A(a(c(x0)))

The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
QTRS
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1
A(b(c(b(x0)))) → A(x0)
A(b(y0)) → A(c(a(y0)))
A(b(b(x0))) → A(a(c(b(b(a(a(c(a(x0)))))))))
A(b(x1)) → A(x1)
A(b(x0)) → A(a(c(x0)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1
A(b(c(b(x0)))) → A(x0)
A(b(y0)) → A(c(a(y0)))
A(b(b(x0))) → A(a(c(b(b(a(a(c(a(x0)))))))))
A(b(x1)) → A(x1)
A(b(x0)) → A(a(c(x0)))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(x)) → b(b(a(a(c(a(x))))))
c(c(b(x))) → x
A(b(c(b(x)))) → A(x)
A(b(x)) → A(c(a(x)))
A(b(b(x))) → A(a(c(b(b(a(a(c(a(x)))))))))
A(b(x)) → A(x)
A(b(x)) → A(a(c(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
QTRS
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(x)) → b(b(a(a(c(a(x))))))
c(c(b(x))) → x
A(b(c(b(x)))) → A(x)
A(b(x)) → A(c(a(x)))
A(b(b(x))) → A(a(c(b(b(a(a(c(a(x)))))))))
A(b(x)) → A(x)
A(b(x)) → A(a(c(x)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(x)) → b(b(a(a(c(a(x))))))
c(c(b(x))) → x
A(b(c(b(x)))) → A(x)
A(b(x)) → A(c(a(x)))
A(b(b(x))) → A(a(c(b(b(a(a(c(a(x)))))))))
A(b(x)) → A(x)
A(b(x)) → A(a(c(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
QTRS
                                  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(x)) → b(b(a(a(c(a(x))))))
c(c(b(x))) → x
A(b(c(b(x)))) → A(x)
A(b(x)) → A(c(a(x)))
A(b(b(x))) → A(a(c(b(b(a(a(c(a(x)))))))))
A(b(x)) → A(x)
A(b(x)) → A(a(c(x)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(b(A(x))) → B(c(a(A(x))))
B(a(x)) → B(b(x))
B(a(x)) → A1(b(b(x)))
B(A(x)) → A1(c(A(x)))
B(a(x)) → A1(a(b(b(x))))
B(b(A(x))) → A1(b(b(c(a(A(x))))))
B(b(A(x))) → B(b(c(a(A(x)))))
B(b(A(x))) → A1(c(a(a(b(b(c(a(A(x)))))))))
B(b(A(x))) → A1(a(b(b(c(a(A(x)))))))
B(a(x)) → A1(c(a(a(b(b(x))))))
B(a(x)) → B(x)
B(b(A(x))) → A1(A(x))
B(A(x)) → A1(A(x))

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
QDP
                                      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(A(x))) → B(c(a(A(x))))
B(a(x)) → B(b(x))
B(a(x)) → A1(b(b(x)))
B(A(x)) → A1(c(A(x)))
B(a(x)) → A1(a(b(b(x))))
B(b(A(x))) → A1(b(b(c(a(A(x))))))
B(b(A(x))) → B(b(c(a(A(x)))))
B(b(A(x))) → A1(c(a(a(b(b(c(a(A(x)))))))))
B(b(A(x))) → A1(a(b(b(c(a(A(x)))))))
B(a(x)) → A1(c(a(a(b(b(x))))))
B(a(x)) → B(x)
B(b(A(x))) → A1(A(x))
B(A(x)) → A1(A(x))

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 10 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
QDP
                                          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(a(x)) → B(b(x))
B(b(A(x))) → B(b(c(a(A(x)))))
B(a(x)) → B(x)

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(b(A(x))) → B(b(c(a(A(x))))) at position [0] we obtained the following new rules:

B(b(A(y0))) → B(b(c(A(y0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ Narrowing
QDP
                                              ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(A(y0))) → B(b(c(A(y0))))
B(a(x)) → B(b(x))
B(a(x)) → B(x)

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
QDP
                                                  ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(a(x)) → B(b(x))
B(a(x)) → B(x)

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(a(x)) → B(b(x)) at position [0] we obtained the following new rules:

B(a(b(A(x0)))) → B(a(c(a(a(b(b(c(a(A(x0))))))))))
B(a(c(c(x0)))) → B(x0)
B(a(c(b(A(x0))))) → B(A(x0))
B(a(A(x0))) → B(a(c(A(x0))))
B(a(a(x0))) → B(a(c(a(a(b(b(x0)))))))
B(a(A(x0))) → B(c(a(A(x0))))
B(a(A(x0))) → B(A(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(a(b(A(x0)))) → B(a(c(a(a(b(b(c(a(A(x0))))))))))
B(a(c(c(x0)))) → B(x0)
B(a(c(b(A(x0))))) → B(A(x0))
B(a(A(x0))) → B(a(c(A(x0))))
B(a(A(x0))) → B(c(a(A(x0))))
B(a(a(x0))) → B(a(c(a(a(b(b(x0)))))))
B(a(x)) → B(x)
B(a(A(x0))) → B(A(x0))

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ QDPToSRSProof
                            ↳ QTRS
                              ↳ QTRS Reverse
                                ↳ QTRS
                                  ↳ QTRS Reverse
                                  ↳ QTRS Reverse
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(a(b(A(x0)))) → B(a(c(a(a(b(b(c(a(A(x0))))))))))
B(a(c(c(x0)))) → B(x0)
B(a(A(x0))) → B(a(c(A(x0))))
B(a(a(x0))) → B(a(c(a(a(b(b(x0)))))))
B(a(x)) → B(x)

The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x
b(c(b(A(x)))) → A(x)
b(A(x)) → a(c(A(x)))
b(b(A(x))) → a(c(a(a(b(b(c(a(A(x)))))))))
b(A(x)) → A(x)
b(A(x)) → c(a(A(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(x1)) → b(b(a(a(c(a(x1))))))
c(c(b(x1))) → x1

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
b(a(x)) → a(c(a(a(b(b(x))))))
b(c(c(x))) → x

Q is empty.