Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(a(c(x1))) → B(x1)
B(a(c(x1))) → A(a(b(x1)))
B(a(c(x1))) → A(b(x1))
A(x1) → B(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(a(c(x1))) → B(x1)
B(a(c(x1))) → A(a(b(x1)))
B(a(c(x1))) → A(b(x1))
A(x1) → B(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
QTRS
          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))
B(a(c(x1))) → B(x1)
B(a(c(x1))) → A(a(b(x1)))
B(a(c(x1))) → A(b(x1))
A(x1) → B(x1)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))
B(a(c(x1))) → B(x1)
B(a(c(x1))) → A(a(b(x1)))
B(a(c(x1))) → A(b(x1))
A(x1) → B(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
QTRS
              ↳ DependencyPairsProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

C(a(b(x))) → C(c(x))
C(a(b(x))) → A1(a(c(c(x))))
A1(x) → B1(x)
C(a(b(x))) → B1(a(a(c(c(x)))))
C(a(B(x))) → A1(A(x))
C(a(B(x))) → A2(x)
C(a(B(x))) → B1(a(A(x)))
C(a(B(x))) → B1(A(x))
C(a(b(x))) → C(x)
C(a(b(x))) → A1(c(c(x)))

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(x))) → C(c(x))
C(a(b(x))) → A1(a(c(c(x))))
A1(x) → B1(x)
C(a(b(x))) → B1(a(a(c(c(x)))))
C(a(B(x))) → A1(A(x))
C(a(B(x))) → A2(x)
C(a(B(x))) → B1(a(A(x)))
C(a(B(x))) → B1(A(x))
C(a(b(x))) → C(x)
C(a(b(x))) → A1(c(c(x)))

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 8 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
QDP
                      ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(x))) → C(c(x))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(x))) → C(c(x)) at position [0] we obtained the following new rules:

C(a(b(a(B(x0))))) → C(B(x0))
C(a(b(a(B(x0))))) → C(b(a(A(x0))))
C(a(b(a(B(x0))))) → C(b(A(x0)))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
QDP
                          ↳ DependencyGraphProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(x0))))) → C(b(a(A(x0))))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(b(A(x0)))
C(a(b(a(B(x0))))) → C(B(x0))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(x0))))) → C(b(a(A(x0))))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(b(A(x0)))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(x0))))) → C(b(a(A(x0)))) at position [0] we obtained the following new rules:

C(a(b(a(B(y0))))) → C(a(A(y0)))
C(a(b(a(B(y0))))) → C(b(b(A(y0))))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(B(x0))))) → C(b(a(B(x0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
QDP
                                  ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(b(b(A(y0))))
C(a(b(a(B(x0))))) → C(b(A(x0)))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(y0))))) → C(a(A(y0)))
C(a(b(x))) → C(x)
C(a(b(a(B(x0))))) → C(b(a(B(x0))))

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(x0))))) → C(b(A(x0))) at position [0] we obtained the following new rules:

C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(y0))))) → C(A(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
QDP
                                      ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(y0))))) → C(b(b(A(y0))))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(y0))))) → C(a(A(y0)))
C(a(b(x))) → C(x)
C(a(b(a(B(x0))))) → C(b(a(B(x0))))

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(y0))))) → C(a(A(y0))) at position [0] we obtained the following new rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(B(x0))))) → C(a(B(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
QDP
                                          ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(B(y0))))) → C(b(b(A(y0))))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(x))) → C(x)
C(a(b(a(B(x0))))) → C(b(a(B(x0))))

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(y0))))) → C(b(b(A(y0)))) at position [0] we obtained the following new rules:

C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(a(B(y0))))) → C(b(A(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
QDP
                                              ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)
C(a(b(a(B(x0))))) → C(b(a(B(x0))))

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(x0))))) → C(b(a(B(x0)))) at position [0] we obtained the following new rules:

C(a(b(a(B(y0))))) → C(b(B(y0)))
C(a(b(a(B(y0))))) → C(b(b(B(y0))))
C(a(b(a(B(y0))))) → C(a(B(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
QDP
                                                  ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(x0))))) → C(b(B(x0))) at position [0] we obtained the following new rules:

C(a(b(a(B(y0))))) → C(B(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ DependencyGraphProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(y0))))) → C(B(y0))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
                                                          ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(y0))))) → C(A(y0)) at position [0] we obtained the following new rules:

C(a(b(a(B(x0))))) → C(B(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
QDP
                                                              ↳ DependencyGraphProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(x0))))) → C(B(x0))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
QDP
                                                                  ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(b(A(y0)))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(y0))))) → C(b(A(y0))) at position [0] we obtained the following new rules:

C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(y0))))) → C(A(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
QDP
                                                                      ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(a(B(x0)))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(x0))))) → C(a(B(x0))) at position [0] we obtained the following new rules:

C(a(b(a(B(y0))))) → C(b(B(y0)))
C(a(b(a(B(y0))))) → C(B(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
QDP
                                                                          ↳ DependencyGraphProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(y0))))) → C(B(y0))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
QDP
                                                                              ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(a(B(x0))))) → C(b(b(B(x0))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(x0))))) → C(b(b(B(x0)))) at position [0] we obtained the following new rules:

C(a(b(a(B(y0))))) → C(b(B(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
QDP
                                                                                  ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(b(B(x0)))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(x0))))) → C(b(B(x0))) at position [0] we obtained the following new rules:

C(a(b(a(B(y0))))) → C(B(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
QDP
                                                                                      ↳ DependencyGraphProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(y0))))) → C(B(y0))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
QDP
                                                                                          ↳ Narrowing
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(B(y0))))) → C(A(y0))
C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(B(y0))))) → C(A(y0)) at position [0] we obtained the following new rules:

C(a(b(a(B(x0))))) → C(B(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ Narrowing
QDP
                                                                                              ↳ DependencyGraphProof
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(a(B(x0))))) → C(B(x0))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ Narrowing
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
QDP
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(x0))))) → C(b(a(a(c(c(x0))))))
C(a(b(x))) → C(x)

The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))
c(a(B(x))) → B(x)
c(a(B(x))) → b(a(A(x)))
c(a(B(x))) → b(A(x))
A(x) → B(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(x) → b(x)
b(x) → x
b(a(c(x))) → c(c(a(a(b(x)))))
B(a(c(x))) → B(x)
B(a(c(x))) → A(a(b(x)))
B(a(c(x))) → A(b(x))
A(x) → B(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
              ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
b(a(c(x))) → c(c(a(a(b(x)))))
B(a(c(x))) → B(x)
B(a(c(x))) → A(a(b(x)))
B(a(c(x))) → A(b(x))
A(x) → B(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(x1) → b(x1)
b(x1) → x1
b(a(c(x1))) → c(c(a(a(b(x1)))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(x) → b(x)
b(x) → x
c(a(b(x))) → b(a(a(c(c(x)))))

Q is empty.