Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(b(a(b(x1)))) → B(b(b(b(x1))))
B(a(b(b(x1)))) → B(b(b(x1)))
B(b(a(b(x1)))) → B(a(b(b(b(b(x1))))))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x1)))) → B(b(b(x1)))
B(b(b(x1))) → B(a(a(b(a(b(x1))))))
B(b(b(x1))) → B(a(b(x1)))
B(b(b(x1))) → B(b(a(a(b(a(b(x1)))))))

The TRS R consists of the following rules:

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(a(b(x1)))) → B(b(b(b(x1))))
B(a(b(b(x1)))) → B(b(b(x1)))
B(b(a(b(x1)))) → B(a(b(b(b(b(x1))))))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x1)))) → B(b(b(x1)))
B(b(b(x1))) → B(a(a(b(a(b(x1))))))
B(b(b(x1))) → B(a(b(x1)))
B(b(b(x1))) → B(b(a(a(b(a(b(x1)))))))

The TRS R consists of the following rules:

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(a(b(x1)))) → B(b(b(b(x1))))
B(b(a(b(x1)))) → B(a(b(b(b(b(x1))))))
B(a(b(b(x1)))) → B(b(b(x1)))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x1)))) → B(b(b(x1)))
B(b(b(x1))) → B(a(b(x1)))

The TRS R consists of the following rules:

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
QTRS
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))
B(b(a(b(x1)))) → B(b(b(b(x1))))
B(b(a(b(x1)))) → B(a(b(b(b(b(x1))))))
B(a(b(b(x1)))) → B(b(b(x1)))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x1)))) → B(b(b(x1)))
B(b(b(x1))) → B(a(b(x1)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))
B(b(a(b(x1)))) → B(b(b(b(x1))))
B(b(a(b(x1)))) → B(a(b(b(b(b(x1))))))
B(a(b(b(x1)))) → B(b(b(x1)))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x1)))) → B(b(b(x1)))
B(b(b(x1))) → B(a(b(x1)))

The set Q is empty.
We have obtained the following QTRS:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
QTRS
                  ↳ DependencyPairsProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B1(b(b(x))) → B1(a(a(b(b(x)))))
B1(b(B(x))) → B1(a(B(x)))
B1(a(b(B(x)))) → B1(b(a(B(x))))
B1(a(b(B(x)))) → B1(b(b(a(B(x)))))
B1(a(b(b(x)))) → B1(b(b(a(b(x)))))
B1(a(b(B(x)))) → B1(a(B(x)))
B1(a(b(b(x)))) → B1(b(b(b(a(b(x))))))
B1(b(a(B(x)))) → B1(b(B(x)))
B1(b(a(b(x)))) → B1(b(x))
B1(b(b(x))) → B1(a(b(a(a(b(b(x)))))))
B1(b(a(B(x)))) → B1(B(x))
B1(a(b(B(x)))) → B1(b(b(B(x))))
B1(a(b(b(x)))) → B1(a(b(x)))
B1(a(b(b(x)))) → B1(b(a(b(x))))
B1(b(a(b(x)))) → B1(b(b(x)))
B1(a(b(B(x)))) → B1(b(B(x)))
B1(a(b(B(x)))) → B1(b(b(b(a(B(x))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
QDP
                      ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(b(x))) → B1(a(a(b(b(x)))))
B1(b(B(x))) → B1(a(B(x)))
B1(a(b(B(x)))) → B1(b(a(B(x))))
B1(a(b(B(x)))) → B1(b(b(a(B(x)))))
B1(a(b(b(x)))) → B1(b(b(a(b(x)))))
B1(a(b(B(x)))) → B1(a(B(x)))
B1(a(b(b(x)))) → B1(b(b(b(a(b(x))))))
B1(b(a(B(x)))) → B1(b(B(x)))
B1(b(a(b(x)))) → B1(b(x))
B1(b(b(x))) → B1(a(b(a(a(b(b(x)))))))
B1(b(a(B(x)))) → B1(B(x))
B1(a(b(B(x)))) → B1(b(b(B(x))))
B1(a(b(b(x)))) → B1(a(b(x)))
B1(a(b(b(x)))) → B1(b(a(b(x))))
B1(b(a(b(x)))) → B1(b(b(x)))
B1(a(b(B(x)))) → B1(b(B(x)))
B1(a(b(B(x)))) → B1(b(b(b(a(B(x))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 14 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
QDP
                            ↳ Narrowing
                          ↳ QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(a(b(x)))) → B1(b(x))
B1(b(a(b(x)))) → B1(b(b(x)))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(a(b(x)))) → B1(b(b(x))) at position [0] we obtained the following new rules:

B1(b(a(b(b(b(x0)))))) → B1(b(b(a(b(a(a(b(b(x0)))))))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(x0)))))) → B1(b(b(b(x0))))
B1(b(a(b(b(a(b(x0))))))) → B1(b(b(b(b(x0)))))
B1(b(a(b(b(B(x0)))))) → B1(b(b(a(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(b(a(B(x0))))))))
B1(b(a(b(B(x0))))) → B1(b(a(B(x0))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(b(x0))))))) → B1(b(b(b(b(b(a(b(x0))))))))
B1(b(a(b(b(a(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(B(x0)))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(B(x0))))))
B1(b(a(b(b(x0))))) → B1(b(a(b(a(a(b(b(x0))))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ DependencyGraphProof
                          ↳ QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(a(b(b(b(x0)))))) → B1(b(b(a(b(a(a(b(b(x0)))))))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(x0)))))) → B1(b(b(b(x0))))
B1(b(a(b(b(a(b(x0))))))) → B1(b(b(b(b(x0)))))
B1(b(a(b(b(B(x0)))))) → B1(b(b(a(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(b(a(B(x0))))))))
B1(b(a(b(B(x0))))) → B1(b(a(B(x0))))
B1(b(a(b(x)))) → B1(b(x))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(b(x0))))))) → B1(b(b(b(b(b(a(b(x0))))))))
B1(b(a(b(b(a(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(B(x0)))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(B(x0))))))
B1(b(a(b(b(x0))))) → B1(b(a(b(a(a(b(b(x0))))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
QDP
                                    ↳ Narrowing
                          ↳ QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(a(b(b(b(x0)))))) → B1(b(b(a(b(a(a(b(b(x0)))))))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(x0)))))) → B1(b(b(b(x0))))
B1(b(a(b(b(a(b(x0))))))) → B1(b(b(b(b(x0)))))
B1(b(a(b(b(B(x0)))))) → B1(b(b(a(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(b(a(B(x0))))))))
B1(b(a(b(x)))) → B1(b(x))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(b(x0))))))) → B1(b(b(b(b(b(a(b(x0))))))))
B1(b(a(b(b(a(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(B(x0)))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(B(x0))))))
B1(b(a(b(b(x0))))) → B1(b(a(b(a(a(b(b(x0))))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(a(b(a(b(B(x0))))))) → B1(b(b(B(x0)))) at position [0] we obtained the following new rules:

B1(b(a(b(a(b(B(x0))))))) → B1(b(a(B(x0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ DependencyGraphProof
                          ↳ QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(a(b(b(b(x0)))))) → B1(b(b(a(b(a(a(b(b(x0)))))))))
B1(b(a(b(a(b(x0)))))) → B1(b(b(b(x0))))
B1(b(a(b(b(a(b(x0))))))) → B1(b(b(b(b(x0)))))
B1(b(a(b(b(B(x0)))))) → B1(b(b(a(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(b(a(B(x0))))))))
B1(b(a(b(x)))) → B1(b(x))
B1(b(a(b(a(b(B(x0))))))) → B1(b(a(B(x0))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(b(a(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(b(x0))))))) → B1(b(b(b(b(b(a(b(x0))))))))
B1(b(a(b(a(B(x0)))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(B(x0))))))
B1(b(a(b(b(x0))))) → B1(b(a(b(a(a(b(b(x0))))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
QDP
                                            ↳ Narrowing
                          ↳ QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(a(b(b(b(x0)))))) → B1(b(b(a(b(a(a(b(b(x0)))))))))
B1(b(a(b(a(b(x0)))))) → B1(b(b(b(x0))))
B1(b(a(b(x)))) → B1(b(x))
B1(b(a(b(b(a(b(x0))))))) → B1(b(b(b(b(x0)))))
B1(b(a(b(b(B(x0)))))) → B1(b(b(a(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(b(a(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(b(x0))))))) → B1(b(b(b(b(b(a(b(x0))))))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(b(a(B(x0))))))))
B1(b(a(b(a(B(x0)))))) → B1(b(b(B(x0))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(B(x0))))))
B1(b(a(b(b(x0))))) → B1(b(a(b(a(a(b(b(x0))))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(a(b(a(B(x0)))))) → B1(b(b(B(x0)))) at position [0] we obtained the following new rules:

B1(b(a(b(a(B(x0)))))) → B1(b(a(B(x0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof
                          ↳ QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(a(b(b(b(x0)))))) → B1(b(b(a(b(a(a(b(b(x0)))))))))
B1(b(a(b(a(b(x0)))))) → B1(b(b(b(x0))))
B1(b(a(b(a(B(x0)))))) → B1(b(a(B(x0))))
B1(b(a(b(b(a(b(x0))))))) → B1(b(b(b(b(x0)))))
B1(b(a(b(b(B(x0)))))) → B1(b(b(a(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(b(a(B(x0))))))))
B1(b(a(b(x)))) → B1(b(x))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(b(x0))))))) → B1(b(b(b(b(b(a(b(x0))))))))
B1(b(a(b(b(a(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(B(x0))))))
B1(b(a(b(b(x0))))) → B1(b(a(b(a(a(b(b(x0))))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                          ↳ QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(a(b(b(b(x0)))))) → B1(b(b(a(b(a(a(b(b(x0)))))))))
B1(b(a(b(a(b(x0)))))) → B1(b(b(b(x0))))
B1(b(a(b(x)))) → B1(b(x))
B1(b(a(b(b(a(b(x0))))))) → B1(b(b(b(b(x0)))))
B1(b(a(b(b(B(x0)))))) → B1(b(b(a(B(x0)))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(b(a(B(x0))))))) → B1(b(b(b(B(x0)))))
B1(b(a(b(a(b(b(x0))))))) → B1(b(b(b(b(b(a(b(x0))))))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(b(a(B(x0))))))))
B1(b(a(b(a(b(B(x0))))))) → B1(b(b(b(b(B(x0))))))
B1(b(a(b(b(x0))))) → B1(b(a(b(a(a(b(b(x0))))))))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(b(b(x)))) → B1(a(b(x)))

The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

The set Q is empty.
We have obtained the following QTRS:

b(b(a(b(x)))) → b(a(b(b(b(b(x))))))
b(a(b(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(b(a(a(b(a(b(x)))))))
B(b(a(b(x)))) → B(b(b(b(x))))
B(b(a(b(x)))) → B(a(b(b(b(b(x))))))
B(a(b(b(x)))) → B(b(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(b(b(x)))
B(b(b(x))) → B(a(b(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                  ↳ QTRS Reverse
QTRS
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(a(b(x)))) → b(a(b(b(b(b(x))))))
b(a(b(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(b(a(a(b(a(b(x)))))))
B(b(a(b(x)))) → B(b(b(b(x))))
B(b(a(b(x)))) → B(a(b(b(b(b(x))))))
B(a(b(b(x)))) → B(b(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(b(b(x)))
B(b(b(x))) → B(a(b(x)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))
b(a(b(B(x)))) → b(b(b(B(x))))
b(a(b(B(x)))) → b(b(b(b(a(B(x))))))
b(b(a(B(x)))) → b(b(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(B(x)))
b(b(B(x))) → b(a(B(x)))

The set Q is empty.
We have obtained the following QTRS:

b(b(a(b(x)))) → b(a(b(b(b(b(x))))))
b(a(b(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(b(a(a(b(a(b(x)))))))
B(b(a(b(x)))) → B(b(b(b(x))))
B(b(a(b(x)))) → B(a(b(b(b(b(x))))))
B(a(b(b(x)))) → B(b(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(b(b(x)))
B(b(b(x))) → B(a(b(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(a(b(x)))) → b(a(b(b(b(b(x))))))
b(a(b(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(b(a(a(b(a(b(x)))))))
B(b(a(b(x)))) → B(b(b(b(x))))
B(b(a(b(x)))) → B(a(b(b(b(b(x))))))
B(a(b(b(x)))) → B(b(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(b(b(x)))
B(b(b(x))) → B(a(b(x)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))

The set Q is empty.
We have obtained the following QTRS:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(b(a(b(x1)))) → b(a(b(b(b(b(x1))))))
b(a(b(b(x1)))) → b(b(b(x1)))
b(b(b(x1))) → b(b(a(a(b(a(b(x1)))))))

The set Q is empty.
We have obtained the following QTRS:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(b(b(x)))) → b(b(b(b(a(b(x))))))
b(b(a(b(x)))) → b(b(b(x)))
b(b(b(x))) → b(a(b(a(a(b(b(x)))))))

Q is empty.