Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(b(a(b(x1)))) → B(a(a(b(b(x1)))))
B(b(a(b(x1)))) → B(b(x1))
B(b(x1)) → B(a(b(x1)))
B(a(a(b(a(b(x1)))))) → B(b(x1))
B(a(b(x1))) → B(a(a(b(x1))))
B(b(a(b(x1)))) → B(a(b(a(a(b(b(x1)))))))

The TRS R consists of the following rules:

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(a(b(x1)))) → B(a(a(b(b(x1)))))
B(b(a(b(x1)))) → B(b(x1))
B(b(x1)) → B(a(b(x1)))
B(a(a(b(a(b(x1)))))) → B(b(x1))
B(a(b(x1))) → B(a(a(b(x1))))
B(b(a(b(x1)))) → B(a(b(a(a(b(b(x1)))))))

The TRS R consists of the following rules:

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(b(a(b(x1)))) → B(a(a(b(b(x1))))) at position [0,0,0] we obtained the following new rules:

B(b(a(b(a(b(x0)))))) → B(a(a(b(b(a(a(b(x0))))))))
B(b(a(b(b(x0))))) → B(a(a(b(b(a(b(x0)))))))
B(b(a(b(b(a(b(x0))))))) → B(a(a(b(b(a(b(a(a(b(b(x0)))))))))))
B(b(a(b(a(b(x0)))))) → B(a(a(b(a(b(a(a(b(b(x0))))))))))
B(b(a(b(x0)))) → B(a(a(b(a(b(x0))))))
B(b(a(b(a(a(b(a(b(x0))))))))) → B(a(a(b(b(b(x0))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
QDP
          ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(a(b(b(x0))))) → B(a(a(b(b(a(b(x0)))))))
B(b(a(b(b(a(b(x0))))))) → B(a(a(b(b(a(b(a(a(b(b(x0)))))))))))
B(b(x1)) → B(a(b(x1)))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x0)))) → B(a(a(b(a(b(x0))))))
B(b(a(b(a(a(b(a(b(x0))))))))) → B(a(a(b(b(b(x0))))))
B(a(a(b(a(b(x1)))))) → B(b(x1))
B(a(b(x1))) → B(a(a(b(x1))))
B(b(a(b(a(b(x0)))))) → B(a(a(b(b(a(a(b(x0))))))))
B(b(a(b(x1)))) → B(a(b(a(a(b(b(x1)))))))
B(b(a(b(a(b(x0)))))) → B(a(a(b(a(b(a(a(b(b(x0))))))))))

The TRS R consists of the following rules:

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
QTRS
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))
B(b(a(b(b(x0))))) → B(a(a(b(b(a(b(x0)))))))
B(b(a(b(b(a(b(x0))))))) → B(a(a(b(b(a(b(a(a(b(b(x0)))))))))))
B(b(x1)) → B(a(b(x1)))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x0)))) → B(a(a(b(a(b(x0))))))
B(b(a(b(a(a(b(a(b(x0))))))))) → B(a(a(b(b(b(x0))))))
B(a(a(b(a(b(x1)))))) → B(b(x1))
B(a(b(x1))) → B(a(a(b(x1))))
B(b(a(b(a(b(x0)))))) → B(a(a(b(b(a(a(b(x0))))))))
B(b(a(b(x1)))) → B(a(b(a(a(b(b(x1)))))))
B(b(a(b(a(b(x0)))))) → B(a(a(b(a(b(a(a(b(b(x0))))))))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))
B(b(a(b(b(x0))))) → B(a(a(b(b(a(b(x0)))))))
B(b(a(b(b(a(b(x0))))))) → B(a(a(b(b(a(b(a(a(b(b(x0)))))))))))
B(b(x1)) → B(a(b(x1)))
B(b(a(b(x1)))) → B(b(x1))
B(b(a(b(x0)))) → B(a(a(b(a(b(x0))))))
B(b(a(b(a(a(b(a(b(x0))))))))) → B(a(a(b(b(b(x0))))))
B(a(a(b(a(b(x1)))))) → B(b(x1))
B(a(b(x1))) → B(a(a(b(x1))))
B(b(a(b(a(b(x0)))))) → B(a(a(b(b(a(a(b(x0))))))))
B(b(a(b(x1)))) → B(a(b(a(a(b(b(x1)))))))
B(b(a(b(a(b(x0)))))) → B(a(a(b(a(b(a(a(b(b(x0))))))))))

The set Q is empty.
We have obtained the following QTRS:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))
b(b(a(b(B(x))))) → b(a(b(b(a(a(B(x)))))))
b(a(b(b(a(b(B(x))))))) → b(b(a(a(b(a(b(b(a(a(B(x)))))))))))
b(B(x)) → b(a(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(a(b(a(a(B(x))))))
b(a(b(a(a(b(a(b(B(x))))))))) → b(b(b(a(a(B(x))))))
b(a(b(a(a(B(x)))))) → b(B(x))
b(a(B(x))) → b(a(a(B(x))))
b(a(b(a(b(B(x)))))) → b(a(a(b(b(a(a(B(x))))))))
b(a(b(B(x)))) → b(b(a(a(b(a(B(x)))))))
b(a(b(a(b(B(x)))))) → b(b(a(a(b(a(b(a(a(B(x))))))))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
QTRS
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
                  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))
b(b(a(b(B(x))))) → b(a(b(b(a(a(B(x)))))))
b(a(b(b(a(b(B(x))))))) → b(b(a(a(b(a(b(b(a(a(B(x)))))))))))
b(B(x)) → b(a(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(a(b(a(a(B(x))))))
b(a(b(a(a(b(a(b(B(x))))))))) → b(b(b(a(a(B(x))))))
b(a(b(a(a(B(x)))))) → b(B(x))
b(a(B(x))) → b(a(a(B(x))))
b(a(b(a(b(B(x)))))) → b(a(a(b(b(a(a(B(x))))))))
b(a(b(B(x)))) → b(b(a(a(b(a(B(x)))))))
b(a(b(a(b(B(x)))))) → b(b(a(a(b(a(b(a(a(B(x))))))))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))
b(b(a(b(B(x))))) → b(a(b(b(a(a(B(x)))))))
b(a(b(b(a(b(B(x))))))) → b(b(a(a(b(a(b(b(a(a(B(x)))))))))))
b(B(x)) → b(a(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(a(b(a(a(B(x))))))
b(a(b(a(a(b(a(b(B(x))))))))) → b(b(b(a(a(B(x))))))
b(a(b(a(a(B(x)))))) → b(B(x))
b(a(B(x))) → b(a(a(B(x))))
b(a(b(a(b(B(x)))))) → b(a(a(b(b(a(a(B(x))))))))
b(a(b(B(x)))) → b(b(a(a(b(a(B(x)))))))
b(a(b(a(b(B(x)))))) → b(b(a(a(b(a(b(a(a(B(x))))))))))

The set Q is empty.
We have obtained the following QTRS:

b(b(x)) → b(a(b(x)))
b(b(a(b(x)))) → b(a(b(a(a(b(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(a(b(a(b(x)))))) → b(b(x))
B(b(a(b(b(x))))) → B(a(a(b(b(a(b(x)))))))
B(b(a(b(b(a(b(x))))))) → B(a(a(b(b(a(b(a(a(b(b(x)))))))))))
B(b(x)) → B(a(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(a(a(b(a(b(x))))))
B(b(a(b(a(a(b(a(b(x))))))))) → B(a(a(b(b(b(x))))))
B(a(a(b(a(b(x)))))) → B(b(x))
B(a(b(x))) → B(a(a(b(x))))
B(b(a(b(a(b(x)))))) → B(a(a(b(b(a(a(b(x))))))))
B(b(a(b(x)))) → B(a(b(a(a(b(b(x)))))))
B(b(a(b(a(b(x)))))) → B(a(a(b(a(b(a(a(b(b(x))))))))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ QTRS Reverse
QTRS
                  ↳ QTRS Reverse
                  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(b(a(b(x)))) → b(a(b(a(a(b(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(a(b(a(b(x)))))) → b(b(x))
B(b(a(b(b(x))))) → B(a(a(b(b(a(b(x)))))))
B(b(a(b(b(a(b(x))))))) → B(a(a(b(b(a(b(a(a(b(b(x)))))))))))
B(b(x)) → B(a(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(a(a(b(a(b(x))))))
B(b(a(b(a(a(b(a(b(x))))))))) → B(a(a(b(b(b(x))))))
B(a(a(b(a(b(x)))))) → B(b(x))
B(a(b(x))) → B(a(a(b(x))))
B(b(a(b(a(b(x)))))) → B(a(a(b(b(a(a(b(x))))))))
B(b(a(b(x)))) → B(a(b(a(a(b(b(x)))))))
B(b(a(b(a(b(x)))))) → B(a(a(b(a(b(a(a(b(b(x))))))))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))
b(b(a(b(B(x))))) → b(a(b(b(a(a(B(x)))))))
b(a(b(b(a(b(B(x))))))) → b(b(a(a(b(a(b(b(a(a(B(x)))))))))))
b(B(x)) → b(a(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(a(b(a(a(B(x))))))
b(a(b(a(a(b(a(b(B(x))))))))) → b(b(b(a(a(B(x))))))
b(a(b(a(a(B(x)))))) → b(B(x))
b(a(B(x))) → b(a(a(B(x))))
b(a(b(a(b(B(x)))))) → b(a(a(b(b(a(a(B(x))))))))
b(a(b(B(x)))) → b(b(a(a(b(a(B(x)))))))
b(a(b(a(b(B(x)))))) → b(b(a(a(b(a(b(a(a(B(x))))))))))

The set Q is empty.
We have obtained the following QTRS:

b(b(x)) → b(a(b(x)))
b(b(a(b(x)))) → b(a(b(a(a(b(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(a(b(a(b(x)))))) → b(b(x))
B(b(a(b(b(x))))) → B(a(a(b(b(a(b(x)))))))
B(b(a(b(b(a(b(x))))))) → B(a(a(b(b(a(b(a(a(b(b(x)))))))))))
B(b(x)) → B(a(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(a(a(b(a(b(x))))))
B(b(a(b(a(a(b(a(b(x))))))))) → B(a(a(b(b(b(x))))))
B(a(a(b(a(b(x)))))) → B(b(x))
B(a(b(x))) → B(a(a(b(x))))
B(b(a(b(a(b(x)))))) → B(a(a(b(b(a(a(b(x))))))))
B(b(a(b(x)))) → B(a(b(a(a(b(b(x)))))))
B(b(a(b(a(b(x)))))) → B(a(a(b(a(b(a(a(b(b(x))))))))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
QTRS
                  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(b(a(b(x)))) → b(a(b(a(a(b(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(a(b(a(b(x)))))) → b(b(x))
B(b(a(b(b(x))))) → B(a(a(b(b(a(b(x)))))))
B(b(a(b(b(a(b(x))))))) → B(a(a(b(b(a(b(a(a(b(b(x)))))))))))
B(b(x)) → B(a(b(x)))
B(b(a(b(x)))) → B(b(x))
B(b(a(b(x)))) → B(a(a(b(a(b(x))))))
B(b(a(b(a(a(b(a(b(x))))))))) → B(a(a(b(b(b(x))))))
B(a(a(b(a(b(x)))))) → B(b(x))
B(a(b(x))) → B(a(a(b(x))))
B(b(a(b(a(b(x)))))) → B(a(a(b(b(a(a(b(x))))))))
B(b(a(b(x)))) → B(a(b(a(a(b(b(x)))))))
B(b(a(b(a(b(x)))))) → B(a(a(b(a(b(a(a(b(b(x))))))))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B1(b(x)) → B1(a(b(x)))
B1(a(b(a(b(B(x)))))) → B1(a(b(a(a(B(x))))))
B1(a(b(b(a(b(B(x))))))) → B1(a(a(B(x))))
B1(a(b(x))) → B1(a(a(b(x))))
B1(a(B(x))) → B1(a(a(B(x))))
B1(B(x)) → B1(a(B(x)))
B1(a(b(a(b(B(x)))))) → B1(a(a(b(a(b(a(a(B(x)))))))))
B1(a(b(b(x)))) → B1(a(a(b(a(b(x))))))
B1(a(b(b(a(b(B(x))))))) → B1(b(a(a(b(a(b(b(a(a(B(x)))))))))))
B1(a(b(B(x)))) → B1(a(a(b(a(B(x))))))
B1(a(b(a(b(B(x)))))) → B1(a(a(B(x))))
B1(a(b(a(a(B(x)))))) → B1(B(x))
B1(a(b(a(b(B(x)))))) → B1(b(a(a(b(a(b(a(a(B(x))))))))))
B1(a(b(a(b(B(x)))))) → B1(b(a(a(B(x)))))
B1(a(b(B(x)))) → B1(a(b(a(a(B(x))))))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(b(b(a(a(B(x))))))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(a(a(B(x))))
B1(a(b(B(x)))) → B1(b(a(a(b(a(B(x)))))))
B1(a(b(b(x)))) → B1(b(a(a(b(a(b(x)))))))
B1(a(b(B(x)))) → B1(a(B(x)))
B1(a(b(a(a(b(x)))))) → B1(b(x))
B1(b(a(b(B(x))))) → B1(a(a(B(x))))
B1(b(a(b(B(x))))) → B1(b(a(a(B(x)))))
B1(a(b(a(b(B(x)))))) → B1(a(a(b(b(a(a(B(x))))))))
B1(b(a(b(B(x))))) → B1(a(b(b(a(a(B(x)))))))
B1(a(b(b(x)))) → B1(a(b(x)))
B1(a(b(b(a(b(B(x))))))) → B1(b(a(a(B(x)))))
B1(a(b(b(a(b(B(x))))))) → B1(a(b(b(a(a(B(x)))))))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(b(a(a(B(x)))))
B1(a(b(B(x)))) → B1(a(a(B(x))))
B1(a(b(b(a(b(B(x))))))) → B1(a(a(b(a(b(b(a(a(B(x))))))))))

The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))
b(b(a(b(B(x))))) → b(a(b(b(a(a(B(x)))))))
b(a(b(b(a(b(B(x))))))) → b(b(a(a(b(a(b(b(a(a(B(x)))))))))))
b(B(x)) → b(a(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(a(b(a(a(B(x))))))
b(a(b(a(a(b(a(b(B(x))))))))) → b(b(b(a(a(B(x))))))
b(a(b(a(a(B(x)))))) → b(B(x))
b(a(B(x))) → b(a(a(B(x))))
b(a(b(a(b(B(x)))))) → b(a(a(b(b(a(a(B(x))))))))
b(a(b(B(x)))) → b(b(a(a(b(a(B(x)))))))
b(a(b(a(b(B(x)))))) → b(b(a(a(b(a(b(a(a(B(x))))))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
                  ↳ DependencyPairsProof
QDP
                      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(b(x)) → B1(a(b(x)))
B1(a(b(a(b(B(x)))))) → B1(a(b(a(a(B(x))))))
B1(a(b(b(a(b(B(x))))))) → B1(a(a(B(x))))
B1(a(b(x))) → B1(a(a(b(x))))
B1(a(B(x))) → B1(a(a(B(x))))
B1(B(x)) → B1(a(B(x)))
B1(a(b(a(b(B(x)))))) → B1(a(a(b(a(b(a(a(B(x)))))))))
B1(a(b(b(x)))) → B1(a(a(b(a(b(x))))))
B1(a(b(b(a(b(B(x))))))) → B1(b(a(a(b(a(b(b(a(a(B(x)))))))))))
B1(a(b(B(x)))) → B1(a(a(b(a(B(x))))))
B1(a(b(a(b(B(x)))))) → B1(a(a(B(x))))
B1(a(b(a(a(B(x)))))) → B1(B(x))
B1(a(b(a(b(B(x)))))) → B1(b(a(a(b(a(b(a(a(B(x))))))))))
B1(a(b(a(b(B(x)))))) → B1(b(a(a(B(x)))))
B1(a(b(B(x)))) → B1(a(b(a(a(B(x))))))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(b(b(a(a(B(x))))))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(a(a(B(x))))
B1(a(b(B(x)))) → B1(b(a(a(b(a(B(x)))))))
B1(a(b(b(x)))) → B1(b(a(a(b(a(b(x)))))))
B1(a(b(B(x)))) → B1(a(B(x)))
B1(a(b(a(a(b(x)))))) → B1(b(x))
B1(b(a(b(B(x))))) → B1(a(a(B(x))))
B1(b(a(b(B(x))))) → B1(b(a(a(B(x)))))
B1(a(b(a(b(B(x)))))) → B1(a(a(b(b(a(a(B(x))))))))
B1(b(a(b(B(x))))) → B1(a(b(b(a(a(B(x)))))))
B1(a(b(b(x)))) → B1(a(b(x)))
B1(a(b(b(a(b(B(x))))))) → B1(b(a(a(B(x)))))
B1(a(b(b(a(b(B(x))))))) → B1(a(b(b(a(a(B(x)))))))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(b(a(a(B(x)))))
B1(a(b(B(x)))) → B1(a(a(B(x))))
B1(a(b(b(a(b(B(x))))))) → B1(a(a(b(a(b(b(a(a(B(x))))))))))

The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))
b(b(a(b(B(x))))) → b(a(b(b(a(a(B(x)))))))
b(a(b(b(a(b(B(x))))))) → b(b(a(a(b(a(b(b(a(a(B(x)))))))))))
b(B(x)) → b(a(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(a(b(a(a(B(x))))))
b(a(b(a(a(b(a(b(B(x))))))))) → b(b(b(a(a(B(x))))))
b(a(b(a(a(B(x)))))) → b(B(x))
b(a(B(x))) → b(a(a(B(x))))
b(a(b(a(b(B(x)))))) → b(a(a(b(b(a(a(B(x))))))))
b(a(b(B(x)))) → b(b(a(a(b(a(B(x)))))))
b(a(b(a(b(B(x)))))) → b(b(a(a(b(a(b(a(a(B(x))))))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 17 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
QDP
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(b(a(b(B(x)))))) → B1(b(a(a(b(a(b(a(a(B(x))))))))))
B1(a(b(a(b(B(x)))))) → B1(b(a(a(B(x)))))
B1(b(x)) → B1(a(b(x)))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(b(b(a(a(B(x))))))
B1(a(b(B(x)))) → B1(b(a(a(b(a(B(x)))))))
B1(a(b(b(x)))) → B1(b(a(a(b(a(b(x)))))))
B1(a(b(a(a(b(x)))))) → B1(b(x))
B1(b(a(b(B(x))))) → B1(b(a(a(B(x)))))
B1(a(b(b(a(b(B(x))))))) → B1(b(a(a(b(a(b(b(a(a(B(x)))))))))))
B1(b(a(b(B(x))))) → B1(a(b(b(a(a(B(x)))))))
B1(a(b(b(x)))) → B1(a(b(x)))
B1(a(b(b(a(b(B(x))))))) → B1(b(a(a(B(x)))))
B1(a(b(b(a(b(B(x))))))) → B1(a(b(b(a(a(B(x)))))))
B1(a(b(a(a(b(a(b(B(x))))))))) → B1(b(a(a(B(x)))))

The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))
b(b(a(b(B(x))))) → b(a(b(b(a(a(B(x)))))))
b(a(b(b(a(b(B(x))))))) → b(b(a(a(b(a(b(b(a(a(B(x)))))))))))
b(B(x)) → b(a(B(x)))
b(a(b(B(x)))) → b(B(x))
b(a(b(B(x)))) → b(a(b(a(a(B(x))))))
b(a(b(a(a(b(a(b(B(x))))))))) → b(b(b(a(a(B(x))))))
b(a(b(a(a(B(x)))))) → b(B(x))
b(a(B(x))) → b(a(a(B(x))))
b(a(b(a(b(B(x)))))) → b(a(a(b(b(a(a(B(x))))))))
b(a(b(B(x)))) → b(b(a(a(b(a(B(x)))))))
b(a(b(a(b(B(x)))))) → b(b(a(a(b(a(b(a(a(B(x))))))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))

The set Q is empty.
We have obtained the following QTRS:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(b(x1)) → b(a(b(x1)))
b(b(a(b(x1)))) → b(a(b(a(a(b(b(x1)))))))
b(a(b(x1))) → b(a(a(b(x1))))
b(a(a(b(a(b(x1)))))) → b(b(x1))

The set Q is empty.
We have obtained the following QTRS:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

b(b(x)) → b(a(b(x)))
b(a(b(b(x)))) → b(b(a(a(b(a(b(x)))))))
b(a(b(x))) → b(a(a(b(x))))
b(a(b(a(a(b(x)))))) → b(b(x))

Q is empty.