Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(x1))
A(b(x1)) → B(b(b(x1)))
B(a(x1)) → A(a(x1))
B(a(x1)) → A(a(a(x1)))

The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(x1))
A(b(x1)) → B(b(b(x1)))
B(a(x1)) → A(a(x1))
B(a(x1)) → A(a(a(x1)))

The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → B(b(b(x1))) at position [0] we obtained the following new rules:

A(b(y0)) → B(b(y0))
A(b(a(x0))) → B(b(a(a(a(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
QDP
          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(b(x1))
B(a(x1)) → A(a(x1))
B(a(x1)) → A(a(a(x1)))
A(b(a(x0))) → B(b(a(a(a(x0)))))

The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(x1)) → B(b(x1)) at position [0] we obtained the following new rules:

A(b(x0)) → B(x0)
A(b(a(x0))) → B(a(a(a(x0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x0)) → B(x0)
B(a(x1)) → A(a(x1))
B(a(x1)) → A(a(a(x1)))
A(b(a(x0))) → B(a(a(a(x0))))
A(b(a(x0))) → B(b(a(a(a(x0)))))

The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(a(x1)) → A(a(a(x1))) at position [0] we obtained the following new rules:

B(a(y0)) → A(a(y0))
B(a(b(x0))) → A(a(b(b(b(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
QDP
                  ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x0)) → B(x0)
B(a(x1)) → A(a(x1))
A(b(a(x0))) → B(a(a(a(x0))))
B(a(b(x0))) → A(a(b(b(b(x0)))))
A(b(a(x0))) → B(b(a(a(a(x0)))))

The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(a(x1)) → A(a(x1)) at position [0] we obtained the following new rules:

B(a(b(x0))) → A(b(b(b(x0))))
B(a(x0)) → A(x0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
QDP
                      ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x0)) → B(x0)
B(a(x0)) → A(x0)
B(a(b(x0))) → A(b(b(b(x0))))
A(b(a(x0))) → B(a(a(a(x0))))
A(b(a(x0))) → B(b(a(a(a(x0)))))
B(a(b(x0))) → A(a(b(b(b(x0)))))

The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
QTRS
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1
A(b(x0)) → B(x0)
B(a(x0)) → A(x0)
B(a(b(x0))) → A(b(b(b(x0))))
A(b(a(x0))) → B(a(a(a(x0))))
A(b(a(x0))) → B(b(a(a(a(x0)))))
B(a(b(x0))) → A(a(b(b(b(x0)))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1
A(b(x0)) → B(x0)
B(a(x0)) → A(x0)
B(a(b(x0))) → A(b(b(b(x0))))
A(b(a(x0))) → B(a(a(a(x0))))
A(b(a(x0))) → B(b(a(a(a(x0)))))
B(a(b(x0))) → A(a(b(b(b(x0)))))

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

The set Q is empty.
We have obtained the following QTRS:

a(b(x)) → b(b(b(x)))
b(a(x)) → a(a(a(x)))
a(x) → x
b(x) → x
A(b(x)) → B(x)
B(a(x)) → A(x)
B(a(b(x))) → A(b(b(b(x))))
A(b(a(x))) → B(a(a(a(x))))
A(b(a(x))) → B(b(a(a(a(x)))))
B(a(b(x))) → A(a(b(b(b(x)))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
QTRS
                              ↳ DependencyPairsProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x)) → b(b(b(x)))
b(a(x)) → a(a(a(x)))
a(x) → x
b(x) → x
A(b(x)) → B(x)
B(a(x)) → A(x)
B(a(b(x))) → A(b(b(b(x))))
A(b(a(x))) → B(a(a(a(x))))
A(b(a(x))) → B(b(a(a(a(x)))))
B(a(b(x))) → A(a(b(b(b(x)))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B1(a(B(x))) → A1(A(x))
B1(a(x)) → B1(x)
B1(a(B(x))) → B1(a(A(x)))
B1(a(B(x))) → B1(b(A(x)))
B1(a(x)) → B1(b(b(x)))
A1(b(A(x))) → A1(b(B(x)))
B1(a(B(x))) → B1(b(a(A(x))))
A1(b(A(x))) → A1(B(x))
A1(b(A(x))) → A1(a(b(B(x))))
A1(b(x)) → A1(a(x))
A1(b(x)) → A1(x)
B1(a(x)) → B1(b(x))
A1(b(A(x))) → A1(a(a(b(B(x)))))
B1(a(B(x))) → B1(A(x))
B1(a(B(x))) → B1(b(b(a(A(x)))))
A1(b(x)) → A1(a(a(x)))
B1(a(B(x))) → B1(b(b(A(x))))
A1(b(A(x))) → A1(a(B(x)))
A1(b(A(x))) → B1(B(x))
A1(b(A(x))) → A1(a(a(B(x))))

The TRS R consists of the following rules:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
QDP
                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(B(x))) → A1(A(x))
B1(a(x)) → B1(x)
B1(a(B(x))) → B1(a(A(x)))
B1(a(B(x))) → B1(b(A(x)))
B1(a(x)) → B1(b(b(x)))
A1(b(A(x))) → A1(b(B(x)))
B1(a(B(x))) → B1(b(a(A(x))))
A1(b(A(x))) → A1(B(x))
A1(b(A(x))) → A1(a(b(B(x))))
A1(b(x)) → A1(a(x))
A1(b(x)) → A1(x)
B1(a(x)) → B1(b(x))
A1(b(A(x))) → A1(a(a(b(B(x)))))
B1(a(B(x))) → B1(A(x))
B1(a(B(x))) → B1(b(b(a(A(x)))))
A1(b(x)) → A1(a(a(x)))
B1(a(B(x))) → B1(b(b(A(x))))
A1(b(A(x))) → A1(a(B(x)))
A1(b(A(x))) → B1(B(x))
A1(b(A(x))) → A1(a(a(B(x))))

The TRS R consists of the following rules:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
                                      ↳ QDP
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(A(x))) → A1(a(a(b(B(x)))))
A1(b(x)) → A1(a(a(x)))
A1(b(A(x))) → A1(b(B(x)))
A1(b(A(x))) → A1(a(B(x)))
A1(b(A(x))) → A1(a(b(B(x))))
A1(b(A(x))) → A1(a(a(B(x))))
A1(b(x)) → A1(x)
A1(b(x)) → A1(a(x))

The TRS R consists of the following rules:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
QDP
                                            ↳ RuleRemovalProof
                                        ↳ UsableRulesProof
                                      ↳ QDP
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(A(x))) → A1(a(a(b(B(x)))))
A1(b(x)) → A1(a(a(x)))
A1(b(A(x))) → A1(b(B(x)))
A1(b(A(x))) → A1(a(B(x)))
A1(b(x)) → A1(a(x))
A1(b(x)) → A1(x)
A1(b(A(x))) → A1(a(a(B(x))))
A1(b(A(x))) → A1(a(b(B(x))))

The TRS R consists of the following rules:

b(x) → x
a(b(x)) → a(a(a(x)))
a(b(A(x))) → a(a(a(b(B(x)))))
a(b(A(x))) → a(a(a(B(x))))
a(x) → x
a(B(x)) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A1(b(A(x))) → A1(b(B(x)))
A1(b(A(x))) → A1(a(B(x)))
A1(b(x)) → A1(a(x))
A1(b(x)) → A1(x)
A1(b(A(x))) → A1(a(a(B(x))))
A1(b(A(x))) → A1(a(b(B(x))))

Strictly oriented rules of the TRS R:

b(x) → x
a(b(A(x))) → a(a(a(B(x))))
a(x) → x

Used ordering: POLO with Polynomial interpretation [25]:

POL(A(x1)) = 2 + x1   
POL(A1(x1)) = x1   
POL(B(x1)) = 1 + x1   
POL(a(x1)) = 1 + x1   
POL(b(x1)) = 2 + 2·x1   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ RuleRemovalProof
QDP
                                                ↳ DependencyGraphProof
                                        ↳ UsableRulesProof
                                      ↳ QDP
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(A(x))) → A1(a(a(b(B(x)))))
A1(b(x)) → A1(a(a(x)))

The TRS R consists of the following rules:

a(b(x)) → a(a(a(x)))
a(b(A(x))) → a(a(a(b(B(x)))))
a(B(x)) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
QDP
                                      ↳ QDP
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(A(x))) → A1(a(a(b(B(x)))))
A1(b(x)) → A1(a(a(x)))
A1(b(A(x))) → A1(b(B(x)))
A1(b(A(x))) → A1(a(B(x)))
A1(b(x)) → A1(a(x))
A1(b(x)) → A1(x)
A1(b(A(x))) → A1(a(a(B(x))))
A1(b(A(x))) → A1(a(b(B(x))))

The TRS R consists of the following rules:

b(x) → x
a(b(x)) → a(a(a(x)))
a(b(A(x))) → a(a(a(b(B(x)))))
a(b(A(x))) → a(a(a(B(x))))
a(x) → x
a(B(x)) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → B1(b(x))
B1(a(x)) → B1(x)
B1(a(B(x))) → B1(b(b(a(A(x)))))
B1(a(B(x))) → B1(a(A(x)))
B1(a(B(x))) → B1(b(A(x)))
B1(a(x)) → B1(b(b(x)))
B1(a(B(x))) → B1(b(b(A(x))))
B1(a(B(x))) → B1(b(a(A(x))))

The TRS R consists of the following rules:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
QDP
                                        ↳ UsableRulesProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → B1(b(x))
B1(a(x)) → B1(x)
B1(a(B(x))) → B1(b(b(a(A(x)))))
B1(a(B(x))) → B1(a(A(x)))
B1(a(B(x))) → B1(b(A(x)))
B1(a(x)) → B1(b(b(x)))
B1(a(B(x))) → B1(b(b(A(x))))
B1(a(B(x))) → B1(b(a(A(x))))

The TRS R consists of the following rules:

b(a(B(x))) → b(b(b(a(A(x)))))
b(a(x)) → b(b(b(x)))
b(a(B(x))) → b(b(b(A(x))))
b(x) → x
b(A(x)) → B(x)
a(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
QDP
                                            ↳ RuleRemovalProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → B1(b(x))
B1(a(x)) → B1(x)
B1(a(B(x))) → B1(b(b(a(A(x)))))
B1(a(B(x))) → B1(a(A(x)))
B1(a(B(x))) → B1(b(A(x)))
B1(a(x)) → B1(b(b(x)))
B1(a(B(x))) → B1(b(b(A(x))))
B1(a(B(x))) → B1(b(a(A(x))))

The TRS R consists of the following rules:

b(a(B(x))) → b(b(b(a(A(x)))))
b(a(x)) → b(b(b(x)))
b(a(B(x))) → b(b(b(A(x))))
b(x) → x
b(A(x)) → B(x)
a(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

B1(a(B(x))) → B1(b(A(x)))
B1(a(B(x))) → B1(b(b(A(x))))

Strictly oriented rules of the TRS R:

b(a(B(x))) → b(b(b(A(x))))

Used ordering: POLO with Polynomial interpretation [25]:

POL(A(x1)) = 2 + x1   
POL(B(x1)) = 2 + x1   
POL(B1(x1)) = 2·x1   
POL(a(x1)) = 2·x1   
POL(b(x1)) = x1   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ RuleRemovalProof
QDP
                                                ↳ RuleRemovalProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → B1(b(x))
B1(a(x)) → B1(x)
B1(a(B(x))) → B1(b(b(a(A(x)))))
B1(a(B(x))) → B1(a(A(x)))
B1(a(x)) → B1(b(b(x)))
B1(a(B(x))) → B1(b(a(A(x))))

The TRS R consists of the following rules:

b(a(B(x))) → b(b(b(a(A(x)))))
b(a(x)) → b(b(b(x)))
b(x) → x
b(A(x)) → B(x)
a(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

B1(a(x)) → B1(b(x))
B1(a(x)) → B1(x)
B1(a(x)) → B1(b(b(x)))

Strictly oriented rules of the TRS R:

b(a(x)) → b(b(b(x)))
a(x) → x

Used ordering: POLO with Polynomial interpretation [25]:

POL(A(x1)) = x1   
POL(B(x1)) = x1   
POL(B1(x1)) = 2·x1   
POL(a(x1)) = 2 + 2·x1   
POL(b(x1)) = x1   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ RuleRemovalProof
                                              ↳ QDP
                                                ↳ RuleRemovalProof
QDP
                                                    ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(B(x))) → B1(b(b(a(A(x)))))
B1(a(B(x))) → B1(a(A(x)))
B1(a(B(x))) → B1(b(a(A(x))))

The TRS R consists of the following rules:

b(a(B(x))) → b(b(b(a(A(x)))))
b(x) → x
b(A(x)) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ RuleRemovalProof
                                              ↳ QDP
                                                ↳ RuleRemovalProof
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
QDP
                                                        ↳ RuleRemovalProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(B(x))) → B1(b(b(a(A(x)))))
B1(a(B(x))) → B1(b(a(A(x))))

The TRS R consists of the following rules:

b(a(B(x))) → b(b(b(a(A(x)))))
b(x) → x
b(A(x)) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

B1(a(B(x))) → B1(b(a(A(x))))

Strictly oriented rules of the TRS R:

b(x) → x

Used ordering: POLO with Polynomial interpretation [25]:

POL(A(x1)) = x1   
POL(B(x1)) = 2 + x1   
POL(B1(x1)) = x1   
POL(a(x1)) = 2·x1   
POL(b(x1)) = 2 + x1   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ RuleRemovalProof
                                              ↳ QDP
                                                ↳ RuleRemovalProof
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ RuleRemovalProof
QDP
                                                            ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(B(x))) → B1(b(b(a(A(x)))))

The TRS R consists of the following rules:

b(a(B(x))) → b(b(b(a(A(x)))))
b(A(x)) → B(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.
We have reversed the following QTRS:
The set of rules R is

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x
b(A(x)) → B(x)
a(B(x)) → A(x)
b(a(B(x))) → b(b(b(A(x))))
a(b(A(x))) → a(a(a(B(x))))
a(b(A(x))) → a(a(a(b(B(x)))))
b(a(B(x))) → b(b(b(a(A(x)))))

The set Q is empty.
We have obtained the following QTRS:

a(b(x)) → b(b(b(x)))
b(a(x)) → a(a(a(x)))
a(x) → x
b(x) → x
A(b(x)) → B(x)
B(a(x)) → A(x)
B(a(b(x))) → A(b(b(b(x))))
A(b(a(x))) → B(a(a(a(x))))
A(b(a(x))) → B(b(a(a(a(x)))))
B(a(b(x))) → A(a(b(b(b(x)))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                              ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x)) → b(b(b(x)))
b(a(x)) → a(a(a(x)))
a(x) → x
b(x) → x
A(b(x)) → B(x)
B(a(x)) → A(x)
B(a(b(x))) → A(b(b(b(x))))
A(b(a(x))) → B(a(a(a(x))))
A(b(a(x))) → B(b(a(a(a(x)))))
B(a(b(x))) → A(a(b(b(b(x)))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → b(b(b(x1)))
b(a(x1)) → a(a(a(x1)))
a(x1) → x1
b(x1) → x1

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → b(b(b(x)))
a(b(x)) → a(a(a(x)))
a(x) → x
b(x) → x

Q is empty.