Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

Q is empty.


QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

The set Q is empty.
We have obtained the following QTRS:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(b(x1)) → A(x1)
B(b(x1)) → B(a(a(x1)))
B(b(x1)) → A(b(a(a(x1))))
B(b(x1)) → A(a(x1))
A(a(a(b(x1)))) → B(b(x1))

The TRS R consists of the following rules:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(x1)) → A(x1)
B(b(x1)) → B(a(a(x1)))
B(b(x1)) → A(b(a(a(x1))))
B(b(x1)) → A(a(x1))
A(a(a(b(x1)))) → B(b(x1))

The TRS R consists of the following rules:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


B(b(x1)) → A(x1)
B(b(x1)) → B(a(a(x1)))
B(b(x1)) → A(a(x1))
The remaining pairs can at least be oriented weakly.

B(b(x1)) → A(b(a(a(x1))))
A(a(a(b(x1)))) → B(b(x1))
Used ordering: Polynomial interpretation [25,35]:

POL(B(x1)) = 4 + x_1   
POL(a(x1)) = 1 + x_1   
POL(A(x1)) = 2 + x_1   
POL(b(x1)) = 3 + x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(x1)) → A(b(a(a(x1))))
A(a(a(b(x1)))) → B(b(x1))

The TRS R consists of the following rules:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(b(x1)) → A(b(a(a(x1)))) at position [0] we obtained the following new rules:

B(b(a(a(b(x0))))) → A(b(a(b(b(x0)))))
B(b(a(b(x0)))) → A(b(b(b(x0))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ QDPToSRSProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(a(a(b(x0))))) → A(b(a(b(b(x0)))))
B(b(a(b(x0)))) → A(b(b(b(x0))))
A(a(a(b(x1)))) → B(b(x1))

The TRS R consists of the following rules:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
QTRS
                  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))
B(b(a(a(b(x0))))) → A(b(a(b(b(x0)))))
B(b(a(b(x0)))) → A(b(b(b(x0))))
A(a(a(b(x1)))) → B(b(x1))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))
B(b(a(a(b(x0))))) → A(b(a(b(b(x0)))))
B(b(a(b(x0)))) → A(b(b(b(x0))))
A(a(a(b(x1)))) → B(b(x1))

The set Q is empty.
We have obtained the following QTRS:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

The set Q is empty.
We have obtained the following QTRS:

a(a(a(b(x)))) → b(b(x))
b(b(x)) → a(b(a(a(x))))
B(b(a(a(b(x))))) → A(b(a(b(b(x)))))
B(b(a(b(x)))) → A(b(b(b(x))))
A(a(a(b(x)))) → B(b(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
QTRS
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(a(b(x)))) → b(b(x))
b(b(x)) → a(b(a(a(x))))
B(b(a(a(b(x))))) → A(b(a(b(b(x)))))
B(b(a(b(x)))) → A(b(b(b(x))))
A(a(a(b(x)))) → B(b(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

The set Q is empty.
We have obtained the following QTRS:

a(a(a(b(x)))) → b(b(x))
b(b(x)) → a(b(a(a(x))))
B(b(a(a(b(x))))) → A(b(a(b(b(x)))))
B(b(a(b(x)))) → A(b(b(b(x))))
A(a(a(b(x)))) → B(b(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
QTRS
                      ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(a(b(x)))) → b(b(x))
b(b(x)) → a(b(a(a(x))))
B(b(a(a(b(x))))) → A(b(a(b(b(x)))))
B(b(a(b(x)))) → A(b(b(b(x))))
A(a(a(b(x)))) → B(b(x))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B1(a(b(B(x)))) → B1(b(b(A(x))))
B1(a(a(b(B(x))))) → B1(a(b(A(x))))
B1(a(a(a(x)))) → B1(x)
B1(a(a(b(B(x))))) → B1(A(x))
B1(a(b(B(x)))) → B1(b(A(x)))
B1(a(a(b(B(x))))) → B1(b(a(b(A(x)))))
B1(a(a(A(x)))) → B1(B(x))
B1(a(a(a(x)))) → B1(b(x))
B1(a(b(B(x)))) → B1(A(x))
B1(b(x)) → B1(a(x))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
QDP
                          ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(b(B(x)))) → B1(b(b(A(x))))
B1(a(a(b(B(x))))) → B1(a(b(A(x))))
B1(a(a(a(x)))) → B1(x)
B1(a(a(b(B(x))))) → B1(A(x))
B1(a(b(B(x)))) → B1(b(A(x)))
B1(a(a(b(B(x))))) → B1(b(a(b(A(x)))))
B1(a(a(A(x)))) → B1(B(x))
B1(a(a(a(x)))) → B1(b(x))
B1(a(b(B(x)))) → B1(A(x))
B1(b(x)) → B1(a(x))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ QDPOrderProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(b(B(x)))) → B1(b(b(A(x))))
B1(a(a(a(x)))) → B1(x)
B1(a(b(B(x)))) → B1(b(A(x)))
B1(a(a(b(B(x))))) → B1(b(a(b(A(x)))))
B1(a(a(a(x)))) → B1(b(x))
B1(b(x)) → B1(a(x))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


B1(a(a(a(x)))) → B1(x)
B1(a(b(B(x)))) → B1(b(A(x)))
B1(b(x)) → B1(a(x))
The remaining pairs can at least be oriented weakly.

B1(a(b(B(x)))) → B1(b(b(A(x))))
B1(a(a(b(B(x))))) → B1(b(a(b(A(x)))))
B1(a(a(a(x)))) → B1(b(x))
Used ordering: Polynomial interpretation [25,35]:

POL(B(x1)) = 4 + (4)x_1   
POL(a(x1)) = 1 + x_1   
POL(B1(x1)) = (4)x_1   
POL(A(x1)) = 2 + (4)x_1   
POL(b(x1)) = 3 + x_1   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented:

b(a(a(A(x)))) → b(B(x))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(a(x)))) → b(b(x))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(b(x)) → a(a(b(a(x))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
QDP
                                  ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(b(B(x)))) → B1(b(b(A(x))))
B1(a(a(b(B(x))))) → B1(b(a(b(A(x)))))
B1(a(a(a(x)))) → B1(b(x))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(b(B(x)))) → B1(b(b(A(x))))
B1(a(a(a(x)))) → B1(b(x))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(a(b(B(x)))) → B1(b(b(A(x)))) at position [0] we obtained the following new rules:

B1(a(b(B(y0)))) → B1(a(a(b(a(A(y0))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
QDP
                                          ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(b(B(y0)))) → B1(a(a(b(a(A(y0))))))
B1(a(a(a(x)))) → B1(b(x))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
QDP
                                              ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(x)))) → B1(b(x))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(a(a(a(x)))) → B1(b(x)) at position [0] we obtained the following new rules:

B1(a(a(a(a(a(A(x0))))))) → B1(b(B(x0)))
B1(a(a(a(a(b(B(x0))))))) → B1(b(b(b(A(x0)))))
B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))
B1(a(a(a(b(x0))))) → B1(a(a(b(a(x0)))))
B1(a(a(a(a(a(b(B(x0)))))))) → B1(b(b(a(b(A(x0))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
QDP
                                                  ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(a(a(A(x0))))))) → B1(b(B(x0)))
B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))
B1(a(a(a(a(a(b(B(x0)))))))) → B1(b(b(a(b(A(x0))))))
B1(a(a(a(a(b(B(x0))))))) → B1(b(b(b(A(x0)))))
B1(a(a(a(b(x0))))) → B1(a(a(b(a(x0)))))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
QDP
                                                      ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))
B1(a(a(a(a(a(b(B(x0)))))))) → B1(b(b(a(b(A(x0))))))
B1(a(a(a(a(b(B(x0))))))) → B1(b(b(b(A(x0)))))
B1(a(a(a(b(x0))))) → B1(a(a(b(a(x0)))))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(a(a(a(a(b(B(x0))))))) → B1(b(b(b(A(x0))))) at position [0] we obtained the following new rules:

B1(a(a(a(a(b(B(y0))))))) → B1(a(a(b(a(b(A(y0)))))))
B1(a(a(a(a(b(B(y0))))))) → B1(b(a(a(b(a(A(y0)))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
QDP
                                                          ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))
B1(a(a(a(a(a(b(B(x0)))))))) → B1(b(b(a(b(A(x0))))))
B1(a(a(a(a(b(B(y0))))))) → B1(a(a(b(a(b(A(y0)))))))
B1(a(a(a(a(b(B(y0))))))) → B1(b(a(a(b(a(A(y0)))))))
B1(a(a(a(b(x0))))) → B1(a(a(b(a(x0)))))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
QDP
                                                              ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))
B1(a(a(a(a(a(b(B(x0)))))))) → B1(b(b(a(b(A(x0))))))
B1(a(a(a(b(x0))))) → B1(a(a(b(a(x0)))))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(a(a(a(a(a(b(B(x0)))))))) → B1(b(b(a(b(A(x0)))))) at position [0] we obtained the following new rules:

B1(a(a(a(a(a(b(B(y0)))))))) → B1(a(a(b(a(a(b(A(y0))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
QDP
                                                                  ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))
B1(a(a(a(a(a(b(B(y0)))))))) → B1(a(a(b(a(a(b(A(y0))))))))
B1(a(a(a(b(x0))))) → B1(a(a(b(a(x0)))))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
QDP
                                                                      ↳ SemLabProof
                                                                      ↳ SemLabProof2
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))
B1(a(a(a(b(x0))))) → B1(a(a(b(a(x0)))))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R. Interpretation over the domain with elements from 0 to 1.B: 0
a: 1 + x0
A: 0
B1: 0
b: 0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:

B1.1(a.0(a.1(a.0(b.0(x0))))) → B1.0(a.1(a.0(b.1(a.0(x0)))))
B1.0(a.1(a.0(a.1(a.0(a.1(a.0(x0))))))) → B1.0(b.0(b.0(x0)))
B1.1(a.0(a.1(a.0(a.1(a.0(a.1(x0))))))) → B1.0(b.0(b.1(x0)))
B1.1(a.0(a.1(a.0(b.1(x0))))) → B1.0(a.1(a.0(b.0(a.1(x0)))))

The TRS R consists of the following rules:

b.0(b.1(x)) → a.1(a.0(b.0(a.1(x))))
b.1(a.0(b.0(B.1(x)))) → b.0(b.0(b.0(A.1(x))))
b.0(a.1(a.0(A.0(x)))) → b.0(B.0(x))
b.0(a.1(a.0(a.1(x)))) → b.0(b.1(x))
b.0(a.1(a.0(b.0(B.0(x))))) → b.0(b.1(a.0(b.0(A.0(x)))))
b.0(a.1(a.0(A.1(x)))) → b.0(B.1(x))
b.1(a.0(b.0(B.0(x)))) → b.0(b.0(b.0(A.0(x))))
b.0(a.1(a.0(b.0(B.1(x))))) → b.0(b.1(a.0(b.0(A.1(x)))))
b.1(a.0(a.1(a.0(x)))) → b.0(b.0(x))
b.0(b.0(x)) → a.1(a.0(b.1(a.0(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ SemLabProof
QDP
                                                                          ↳ DependencyGraphProof
                                                                      ↳ SemLabProof2
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1.1(a.0(a.1(a.0(b.0(x0))))) → B1.0(a.1(a.0(b.1(a.0(x0)))))
B1.0(a.1(a.0(a.1(a.0(a.1(a.0(x0))))))) → B1.0(b.0(b.0(x0)))
B1.1(a.0(a.1(a.0(a.1(a.0(a.1(x0))))))) → B1.0(b.0(b.1(x0)))
B1.1(a.0(a.1(a.0(b.1(x0))))) → B1.0(a.1(a.0(b.0(a.1(x0)))))

The TRS R consists of the following rules:

b.0(b.1(x)) → a.1(a.0(b.0(a.1(x))))
b.1(a.0(b.0(B.1(x)))) → b.0(b.0(b.0(A.1(x))))
b.0(a.1(a.0(A.0(x)))) → b.0(B.0(x))
b.0(a.1(a.0(a.1(x)))) → b.0(b.1(x))
b.0(a.1(a.0(b.0(B.0(x))))) → b.0(b.1(a.0(b.0(A.0(x)))))
b.0(a.1(a.0(A.1(x)))) → b.0(B.1(x))
b.1(a.0(b.0(B.0(x)))) → b.0(b.0(b.0(A.0(x))))
b.0(a.1(a.0(b.0(B.1(x))))) → b.0(b.1(a.0(b.0(A.1(x)))))
b.1(a.0(a.1(a.0(x)))) → b.0(b.0(x))
b.0(b.0(x)) → a.1(a.0(b.1(a.0(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ SemLabProof
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
QDP
                                                                      ↳ SemLabProof2
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1.0(a.1(a.0(a.1(a.0(a.1(a.0(x0))))))) → B1.0(b.0(b.0(x0)))

The TRS R consists of the following rules:

b.0(b.1(x)) → a.1(a.0(b.0(a.1(x))))
b.1(a.0(b.0(B.1(x)))) → b.0(b.0(b.0(A.1(x))))
b.0(a.1(a.0(A.0(x)))) → b.0(B.0(x))
b.0(a.1(a.0(a.1(x)))) → b.0(b.1(x))
b.0(a.1(a.0(b.0(B.0(x))))) → b.0(b.1(a.0(b.0(A.0(x)))))
b.0(a.1(a.0(A.1(x)))) → b.0(B.1(x))
b.1(a.0(b.0(B.0(x)))) → b.0(b.0(b.0(A.0(x))))
b.0(a.1(a.0(b.0(B.1(x))))) → b.0(b.1(a.0(b.0(A.1(x)))))
b.1(a.0(a.1(a.0(x)))) → b.0(b.0(x))
b.0(b.0(x)) → a.1(a.0(b.1(a.0(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
As can be seen after transforming the QDP problem by semantic labelling [33] and then some rule deleting processors, only certain labelled rules and pairs can be used. Hence, we only have to consider all unlabelled pairs and rules (without the decreasing rules for quasi-models).

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ QDPToSRSProof
                ↳ QTRS
                  ↳ QTRS Reverse
                    ↳ QTRS
                      ↳ QTRS Reverse
                      ↳ QTRS Reverse
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ SemLabProof
                                                                      ↳ SemLabProof2
QDP
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(a(a(a(a(a(x0))))))) → B1(b(b(x0)))

The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))
b(a(a(b(B(x))))) → b(b(a(b(A(x)))))
b(a(b(B(x)))) → b(b(b(A(x))))
b(a(a(A(x)))) → b(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(a(a(b(x1)))) → b(b(x1))
b(b(x1)) → a(b(a(a(x1))))

The set Q is empty.
We have obtained the following QTRS:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(a(a(x)))) → b(b(x))
b(b(x)) → a(a(b(a(x))))

Q is empty.