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2 Microsoft Research Cambridge, UK

3 Dept. of Computer Science, University College London, UK
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Abstract. Proving termination automatically for programs with ex-
plicit pointer arithmetic is still an open problem. To close this gap, we
introduce a novel abstract domain that can track allocated memory in
detail. We use it to automatically construct a symbolic execution graph
that represents all possible runs of the program and that can be used
to prove memory safety. This graph is then transformed into an integer
transition system, whose termination can be proved by standard tech-
niques. We implemented this approach in the automated termination
prover AProVE and demonstrate its capability of analyzing C programs
with pointer arithmetic that existing tools cannot handle.

1 Introduction

Consider the following standard C implementation of strlen [23, 29], computing
the length of the string at pointer str. In C, strings are usually represented as
a pointer str to the heap, where all following memory cells up to the first one
that contains the value 0 are allocated memory and form the value of the string.

int strlen(char* str) {char* s = str; while(*s) s++; return s-str;}

To analyze algorithms on such data, one has to handle the interplay between ad-
dresses and the values they point to. In C, a violation of memory safety (e.g., de-
referencing NULL, accessing an array outside its bounds, etc.) leads to undefined
behavior, which may also include non-termination. Thus, to prove termination of
C programs with low-level memory access, one must also ensure memory safety.
The strlen algorithm is memory safe and terminates because there is some ad-
dress end ≥ str (an integer property of end and str) such that *end is 0 (a poin-
ter property of end) and all addresses str ≤ s ≤ end are allocated. Other typical
programs with pointer arithmetic operate on arrays (which are just sequences of
memory cells in C). In this paper, we present a novel approach to prove memory
safety and termination of algorithms on integers and pointers automatically. To
avoid handling the intricacies of C, we analyze programs in the platform-indepen-
dent intermediate representation (IR) of the LLVM compilation framework [17].
Our approach works in three steps: First, a symbolic execution graph is created

? Supported by DFG grant GI 274/6-1 and Research Training Group 1298 (AlgoSyn).



that represents an over-approximation of all possible program runs. We present
our abstract domain based on separation logic [22] and the automated construc-
tion of such graphs in Sect. 2. In this step, we handle all issues related to memory,
and in particular prove memory safety of our input program. In Sect. 3, we de-
scribe the second step of our approach, in which we generate an integer transition
system (ITS) from the symbolic execution graph, encoding the essential informa-
tion needed to show termination. In the last step, existing techniques for integer
programs are used to prove termination of the resulting ITS. In Sect. 4, we
compare our approach with related work and show that our implementation in
the termination prover AProVE proves memory safety and termination of typical
pointer algorithms that could not be handled by other tools before.

2 From LLVM to Symbolic Execution Graphs

In Sect. 2.1, we introduce concrete LLVM states and abstract states that represent
sets of concrete states, cf. [9]. Based on this, Sect. 2.2 shows how to construct
symbolic execution graphs automatically. Sect. 2.3 presents our algorithm to
generalize states, needed to always obtain finite symbolic execution graphs.

To simplify the presentation, we restrict ourselves to a single LLVM function
without function calls and to types of the form in (for n-bit integers), in* (for
pointers to values of type in), in**, in***, etc. Like many other approaches to
termination analysis, we disregard integer overflows and assume that variables
are only instantiated with signed integers appropriate for their type. Moreover,
we assume a 1 byte data alignment (i.e., values may be stored at any address).

2.1 Abstract Domain
define i32 @strlen(i8* str) {

entry: 0: c0 = load i8* str

1: c0zero = icmp eq i8 c0, 0

2: br i1 c0zero, label done, label loop

loop: 0: olds = phi i8* [str,entry],[s,loop]

1: s = getelementptr i8* olds, i32 1

2: c = load i8* s

3: czero = icmp eq i8 c, 0

4: br i1 czero, label done, label loop

done: 0: sfin = phi i8* [str,entry],[s,loop]

1: sfinint = ptrtoint i8* sfin to i32

2: strint = ptrtoint i8* str to i32

3: size = sub i32 sfinint, strint

4: ret i32 size }

Consider the strlen func-
tion from Sect. 1. In the
corresponding LLVM code,5

str has the type i8*, since
it is a pointer to the
string’s first character (of
type i8). The program is
split into the basic blocks
entry, loop, and done. We
will explain this LLVM code
in detail when construct-
ing the symbolic execution
graph in Sect. 2.2.

Concrete LLVM states consist of the program counter, the values of local vari-
ables, and the state of the memory. The program counter is a 3-tuple (bprev , b, i),
where b is the name of the current basic block, bprev is the previously executed

5 This LLVM program corresponds to the code obtained from strlen with the Clang
compiler [8]. To ease readability, we wrote variables without “%” in front (i.e., we
wrote “str” instead of “%str” as in proper LLVM) and added line numbers.

2



block,6 and i is the index of the next instruction. So if Blks is the set of all basic
blocks, then the set of code positions is Pos = (Blks ∪ {ε})×Blks ×N. We rep-
resent assignments to the local program variables VP (e.g., VP = {str, c0, . . .})
as functions s : VP → Z. The state of the memory is represented by a partial
function m : N>0 → Z with finite domain that maps addresses to integer values.
So a concrete LLVM state is a 3-tuple (p, s,m) ∈ Pos × (VP → Z)× (N>0 → Z).

To model violations of memory safety, we introduce a special state ERR to be
reached when accessing non-allocated memory. So (p, s,m) denotes only memory
safe states where all addresses in m’s domain are allocated. Let→LLVM be LLVM’s
evaluation relation on concrete states, i.e., (p, s,m)→LLVM (p, s,m) holds iff (p, s,
m) evaluates to (p, s,m) by executing one LLVM instruction. Similarly, (p, s,m)
→LLVM ERR means that the instruction at position p accesses an address where
m is undefined. An LLVM program is memory safe for (p, s,m) iff there is no
evaluation (p, s,m)→+

LLVM ERR, where→+
LLVM is the transitive closure of→LLVM.

To formalize abstract states that stand for sets of concrete states, we use a
fragment of separation logic [22]. Here, an infinite set of symbolic variables Vsym
with Vsym ∩ VP = ∅ can be used in place of concrete integers. We represent
abstract states as tuples (p,LV,KB ,AL,PT ). Again, p ∈ Pos is the program
counter. The function LV : VP → Vsym maps every local variable to a symbolic
variable. To ease the generalization of states in Sect. 2.3, we require injectivity
of LV. The knowledge base KB ⊆ QF IA(Vsym) is a set of pure quantifier-free
first-order formulas that express integer arithmetic properties of Vsym .

The allocation list AL contains expressions of the form alloc(v1,v2) for v1, v2∈
Vsym , which indicate that v1 ≤ v2 and that all addresses between v1 and v2 are
allocated. Finally, PT is a set of “points-to” atoms v1 ↪→ty v2 where v1, v2 ∈ Vsym
and ty is an LLVM type. This means that the value v2 of type ty is stored at
the address v1. Let size(ty) be the number of bytes required for values of type
ty (e.g., size(i8) = 1 and size(i32) = 4). As each memory cell stores one byte,
v1 ↪→i32 v2 means that v2 is stored in the four cells at the addresses v1, . . . , v1+3.

Definition 1 (Abstract States). Abstract states have the form (p,LV,KB ,
AL,PT ) where p∈Pos, LV :VP→Vsym is injective, KB ⊆QF IA(Vsym), AL⊆
{alloc(v1, v2) | v1, v2 ∈ Vsym}, and PT ⊆ {(v1 ↪→ty v2) | v1, v2 ∈ Vsym , ty is an
LLVM type}. Additionally, there is a state ERR for violations of memory safety.

We often identify LV with the set of equations {x = LV(x) | x ∈ VP} and ex-
tend LV to a function from VP]Z to Vsym]Z by defining LV(z) = z for all z ∈ Z.
As an example, consider the following abstract state for our strlen program:

( (ε, entry, 0), {str = ustr, . . . , size = usize}, {z = 0},
{alloc(ustr, vend)}, {vend ↪→i8 z} ).

(†)

It represents states at the beginning of the entry block, where LV(x) = ux for
all x ∈ VP , the memory cells between LV(str) = ustr and vend are allocated,
and the value at the address vend is z (where the knowledge base implies z = 0).

To define the semantics of abstract states a, we introduce the formulas 〈a〉SL
and 〈a〉FO . The separation logic formula 〈a〉SL defines which concrete states are

6 bprev is needed for phi instructions (cf. Sect. 2.2). In the beginning, we set bprev = ε.
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represented by a. The first-order formula 〈a〉FO is used to construct symbolic exe-
cution graphs, allowing us to use standard SMT solving for all reasoning in our
approach. Moreover, we also use 〈a〉FO for the subsequent generation of integer
transition systems from the symbolic execution graphs. In addition to KB , 〈a〉FO
states that the expressions alloc(v1, v2) ∈ AL represent disjoint intervals and that
two addresses must be different if they point to different values in PT .

In 〈a〉SL, we combine the elements of AL with the separating conjunction
“∗” to ensure that different allocated memory blocks are disjoint. Here, as usual
ϕ1 ∗ϕ2 means that ϕ1 and ϕ2 hold for disjoint parts of the memory. In contrast,
the elements of PT are combined by the ordinary conjunction “∧”. So v1 ↪→ty

v2 ∈ PT does not imply that v1 is different from other addresses occurring in
PT . Similarly, we also combine the two formulas resulting from AL and PT by
“∧”, as both express different properties of memory addresses.

Definition 2 (Representing States by Formulas). For v1, v2 ∈ Vsym , let
〈alloc(v1, v2)〉SL = v1 ≤ v2 ∧ (∀x.∃y. (v1 ≤ x ≤ v2)⇒ (x ↪→ y)). Due to the two’s
complement representation, for any LLVM type ty, we define 〈v1 ↪→ty v2〉SL =

〈v1 ↪→size(ty) v3〉SL ∧ (v2 ≥ 0 ⇒ v3 = v2) ∧ (v2 < 0 ⇒ v3 = v2 + 28·size(ty)),

where v3 ∈ Vsym is fresh. Here,7 〈v1 ↪→0 v3〉SL = true and 〈v1 ↪→n+1 v3〉SL =
v1 ↪→ (v3 mod 256) ∧ 〈 (v1 + 1) ↪→n (v3 div 256) 〉SL. Then a = (p,LV,KB ,AL,
PT ) is represented by8 〈a〉SL = LV ∧ KB ∧ (∗ϕ∈AL 〈ϕ〉SL) ∧ (

∧
ϕ∈PT 〈ϕ〉SL).

Moreover, the following first-order information on Vsym is deduced from an
abstract state a = (p,LV,KB ,AL,PT ). Let 〈a〉FO be the smallest set with

〈a〉FO = KB ∪ {v1 ≤ v2 | alloc(v1, v2) ∈ AL} ∪
{v2 < w1 ∨ w2 < v1 | alloc(v1, v2), alloc(w1, w2) ∈ AL, (v1, v2) 6= (w1, w2)} ∪
{v1 6= w1 | (v1 ↪→ty v2), (w1 ↪→ty w2) ∈ PT and |= 〈a〉FO ⇒ v2 6= w2}.

Let T (Vsym) be the set of all arithmetic terms containing only variables from
Vsym . Any function σ : Vsym → T (Vsym) is called an instantiation. Thus, σ does
not instantiate VP . Instantiations are extended to formulas in the usual way, i.e.,
σ(ϕ) instantiates every v ∈ Vsym that occurs free in ϕ by σ(v). An instantiation is
called concrete iff σ(v) ∈ Z for all v ∈ Vsym . Then an abstract state a at position
p represents those concrete states (p, s,m) where (s,m) is a model of σ(〈a〉SL) for
a concrete instantiation σ of the symbolic variables. So for example, the abstract
state (†) on the previous page represents all concrete states ((ε, entry, 0), s,m)
where m is a memory that stores a string at the address s(str).9

7 We assume a little-endian data layout (where least significant bytes are stored in the
lowest address). A corresponding representation could also be defined for big-endian
layout. This layout information is necessary to decide which concrete states are rep-
resented by abstract states, but it is not used when constructing symbolic execution
graphs (i.e., our remaining approach is independent of such layout information).

8 We identify sets of first-order formulas {ϕ1, ..., ϕn} with their conjunction ϕ1∧...∧ϕn.
9 The reason is that then there is an address end ≥ s(str) such that m(end) = 0 and
m is defined for all numbers between s(str) and end . Hence, (s,m) |= σ(〈a〉SL) holds
for an instantiation with σ(ux) = s(x) for all x ∈ VP , σ(vend) = end , and σ(z) = 0.
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It remains to define when (s,m) is a model of a formula from our fragment
of separation logic. For s : VP → Z and any formula ϕ, let s(ϕ) result from
replacing all x ∈ VP in ϕ by s(x). Note that by construction, local variables x

are never quantified in our formulas. Then we define (s,m) |= ϕ iff m |= s(ϕ).
We now define m |= ψ for formulas ψ that may still contain symbolic variables

from Vsym (this is needed for Sect. 2.2). As usual, all free variables v1, . . . , vn in
ψ are implicitly universally quantified, i.e., m |= ψ iff m |= ∀v1, . . . vn. ψ. The
semantics of arithmetic operations and relations and of first-order connectives
and quantifiers is as usual. In particular, we define m |= ∀v. ψ iff m |= σ(ψ) holds
for all instantiations σ where σ(v) ∈ Z and σ(w) = w for all w ∈ Vsym \ {v}.

We still have to define the semantics of ↪→ and ∗ for variable-free formulas.
For z1, z2 ∈ Z, let m |= z1 ↪→ z2 hold iff m(z1) = z2.10 The semantics of ∗ is
defined as usual in separation logic: For two partial functions m1,m2 : N>0 → Z,
we write m1⊥m2 to indicate that the domains of m1 and m2 are disjoint and
m1 · m2 denotes the union of m1 and m2. Then m |= ϕ1 ∗ ϕ2 iff there exist
m1⊥m2 such that m = m1 ·m2 where m1 |= ϕ1 and m2 |= ϕ2.

As usual, “|= ϕ” means that ϕ is a tautology, i.e., that (s,m) |= ϕ holds for
any s : VP → Z and m : N>0 → Z. Clearly, |= 〈a〉SL ⇒ 〈a〉FO , i.e., 〈a〉FO con-
tains first-order information that holds in every concrete state represented by a.

2.2 Constructing Symbolic Execution Graphs

We now show how to automatically generate a symbolic execution graph that
over-approximates all possible executions of a given program. For this, we present
symbolic execution rules for some of the most important LLVM instructions.
Other instructions can be handled in a similar way, cf. App. A. In contrast to
other formalizations of LLVM’s operational semantics [30], our rules operate on
abstract instead of concrete states to allow a symbolic execution of LLVM. In
particular, we also have rules for refining and generalizing abstract states.

Our analysis starts with the set of initial states that one wants to analyze for
termination, e.g., all states where str points to a string. So in our example, we
start with the abstract state (†). Fig. 1 depicts the symbolic execution graph for
strlen. Here, we omitted the component AL = {alloc(ustr, vend)}, which stays
the same in all states in this example. We also abbreviated parts of LV, KB , PT
by “...”. Instead of vend ↪→i8 z and z = 0, we directly wrote vend ↪→ 0, etc.

The function strlen starts with loading the character at address str to c0.
Let p : ins denote that ins is the instruction at position p. Our first rule handles
the case p : “x = load ty* ad”, i.e., the value of type ty at the address ad is
assigned to the variable x. In our rules, let a always denote the abstract state
before the execution step (i.e., above the horizontal line of the rule). Moreover,
we write 〈a〉 instead of 〈a〉FO . As each memory cell stores one byte, in the load-
rule we first have to check whether the addresses ad, . . . , ad + size(ty) − 1 are
allocated, i.e., if there is an alloc(v1, v2) ∈ AL such that 〈a〉 ⇒ (v1 ≤ LV(ad) ∧
10 We use “↪→” instead of “7→” in separation logic, since m |= z1 7→ z2 would imply that
m(z) is undefined for all z 6= z1. This would be inconvenient in our formalization,
since PT usually only contains information about a part of the allocated memory.
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(ε, entry, 0), {str = ustr, ...}, {...}, {vend ↪→ 0}A

(ε, entry, 1), {str = ustr, c0 = v1, ...}, {...}, {ustr ↪→ v1, vend ↪→ 0}B

(ε, entry, 1), {str = ustr, c0 = v1, ...},
{v1 = 0, ...}, {...}

C (ε, entry, 1), {str = ustr, c0 = v1, ...},
{v1 6= 0, ...}, {ustr ↪→ v1, vend ↪→ 0}

D

. . .
(ε, entry, 2), {str = ustr, c0zero = v2, ...}, {v2 = 0, ...}, {vend ↪→ 0, ...}E

(entry, loop, 0), {str = ustr, ...}, {...}, {vend ↪→ 0, ...}F

(entry, loop, 1), {str = ustr, olds = v3, ...}, {v3 = ustr, ...}, {vend ↪→ 0, ...}G

(entry, loop, 2), {str = ustr, s = v4, ...}, {v4 = v3 + 1, v3 = ustr, ...}, {vend ↪→ 0, ...}H

(entry, loop, 3), {str = ustr, c = v5, s = v4, ...}, {...}, {v4 ↪→ v5, vend ↪→ 0, ...}I

(entry, loop, 3), {str = ustr,
c = v5, ...}, {v5 = 0, ...}, {...}

J (entry, loop, 3), {str = ustr, c = v5, s = v4,
...}, {v5 6= 0, ...}, {v4 ↪→ v5, vend ↪→ 0, ...}

K

. . .
(entry, loop, 4), {str = ustr, czero = v6, s = v4, . . .}, {v5 6= 0, v6 = 0, ...}, {...}L

(loop, loop, 0), {str = ustr, c = v5, s = v4, olds = v3, ...},
{v5 6= 0, v4 = v3 + 1, v3 = ustr, ...}, {v4 ↪→ v5, vend ↪→ 0, ...}

M

(loop, loop, 0), {str = vstr, c = vc, s = vs, olds = volds, ...},
{vc 6= 0, vs = volds + 1, volds ≥ vstr, vs < vend , ...}, {vs ↪→ vc, vend ↪→ 0, ...}

N

(loop, loop, 3), {str = vstr, c = wc, s = ws, olds = wolds, ...},
{ws = wolds + 1, wolds = vs, vs < vend , ...}, {ws ↪→ wc, vend ↪→ 0, ...}

O

. . .

(loop, loop, 0), {str = vstr, c = wc, s = ws, olds = wolds, ...},
{wc 6= 0, ws = wolds + 1, wolds = vs, vs < vend , ...}, {ws ↪→ wc, vend ↪→ 0, ...}

P

Fig. 1. Symbolic execution graph for strlen

LV(ad)+size(ty)−1 ≤ v2) is valid. Then, we reach a new abstract state where the
previous position p = (bprev , b, i) is updated to the position p+ = (bprev , b, i+1)
of the next instruction in the same basic block, and we set LV(x) = w for a
fresh w ∈ Vsym . If we already know the value at the address ad (i.e., if there are
w1, w2 ∈ Vsym with |= 〈a〉 ⇒ (LV(ad) = w1) and w1 ↪→ty w2 ∈ PT ) then we
add w = w2 to KB . Otherwise, we add LV(ad) ↪→ty w to PT . We used this rule
to obtain B from A in Fig. 1. In a similar way, one can also formulate a rule for
instructions that store a value at some address in the memory (cf. App. A).

load from allocated memory (p : “x = load ty* ad” with x, ad ∈ VP)

(p, LV ] {x = v}, KB , AL, PT )

(p+, LV ] {x = w}, KB ∪ {w = w2}, AL, PT )
if

• there is alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2),
• there are w1, w2 ∈ Vsym with |= 〈a〉⇒ (LV(ad) = w1) and w1 ↪→ty w2 ∈ PT ,
• w ∈ Vsym is fresh

(p, LV ] {x = v}, KB , AL, PT )

(p+, LV ] {x = w}, KB , AL, PT ∪ {LV(ad) ↪→ty w})
if

• there is alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2),
• there are no w1, w2 ∈ Vsym with |= 〈a〉⇒ (LV(ad) = w1) and w1 ↪→ty w2 ∈ PT ,
• w ∈ Vsym is fresh
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If load accesses an address that was not allocated, then memory safety is
violated and we reach the ERR state.

load from unallocated memory (p : “x = load ty* ad” with x, ad ∈ VP)

(p,LV,KB ,AL,PT )

ERR
if

there is no alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2)

The instructions icmp and br in strlen’s entry block check if the first
character c0 is 0. In that case, we have reached the end of the string and jump to
the block done. So for “x = icmp eq ty t1, t2”, we check if the state contains
enough information to decide whether the values t1 and t2 of type ty are equal.
In that case, the value 1 resp. 0 (i.e., true resp. false) is assigned to x.11

icmp (p : “x = icmp eq ty t1, t2” with x ∈ VP and t1, t2 ∈ VP ∪ Z)

(p, LV ] {x = v}, KB , AL, PT )

(p+, LV ] {x = w}, KB ∪ {w = 1}, AL, PT )

if |= 〈a〉 ⇒ (LV(t1) = LV(t2))
and w ∈ Vsym is fresh

(p, LV ] {x = v}, KB , AL, PT )

(p+, LV ] {x = w}, KB ∪ {w = 0}, AL, PT )

if |= 〈a〉 ⇒ (LV(t1) 6= LV(t2))
and w ∈ Vsym is fresh

The previous rule is only applicable if KB contains enough information to
evaluate the condition. Otherwise, a case analysis needs to be performed, i.e.,
one has to refine the abstract state by extending its knowledge base. This is done
by the following rule which transforms an abstract state into two new ones.12

refining abstract states (p : “x = icmp eq ty t1,t2”, x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV, KB , AL, PT )

(p, LV, KB ∪ {ϕ}, AL, PT ) | (p, LV, KB ∪ {¬ϕ}, AL, PT )

if ϕ is LV(t1)=LV(t2) and both 6|= 〈a〉⇒ϕ and 6|= 〈a〉⇒¬ϕ

For example, in state B of Fig. 1, we evaluate “c0zero = icmp eq i8 c0,

0”, i.e., we check whether the first character c0 of the string str is 0. Since this
cannot be inferred from B’s knowledge base, we refine B to the successor states
C and D and call the edges from B to C and D refinement edges. In D, we
have c0 = v1 and v1 6= 0. Thus, the icmp-rule yields E where c0zero = v2 and
v2 = 0. We do not display the successors of C that lead to a program end.

The conditional branching instruction br is very similar to icmp. To evaluate
“br i1 t, label b1, label b2”, one has to check whether the current state
contains enough information to conclude that t is 1 (i.e., true) or 0 (i.e., false).
Then the evaluation continues with block b1 resp. b2. This rule allows us to
create the successor F of E, where we jump to the block loop.

11 Other integer comparisons (for <, ≤, . . . ) are handled analogously.
12 Analogous refinement rules can also be used for other conditional LLVM instructions.
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br (p : “br i1 t, label b1, label b2” with t ∈ VP ∪ {0, 1} and b1, b2 ∈ Blks)

(p,LV,KB ,AL,PT )

((b, b1, 0),LV,KB ,AL,PT )
if p = (bprev , b, i) and |= 〈a〉 ⇒ (LV(t) = 1)

(p,LV,KB ,AL,PT )

((b, b2, 0),LV,KB ,AL,PT )
if p = (bprev , b, i) and |= 〈a〉 ⇒ (LV(t) = 0)

Next, we have to evaluate a phi instruction. These instructions are needed
due to the static single assignment form of LLVM. Here, “x = phi ty [t1,b1],
. . . ,[tn,bn]” means that if the previous block was bj , then the value tj is assigned
to x. All t1, . . . , tn must have type ty. Since we reached state F in Fig. 1 after
evaluating the entry block, we obtain the state G with olds = v3 and v3 = ustr.

phi (p : “x = phi ty [t1,b1], . . . ,[tn,bn]” with x ∈ VP , ti ∈ VP ∪ Z, bi ∈ Blks)

(p, LV ] {x = v}, KB , AL, PT )

(p+, LV ] {x = w}, KB ∪ {w = LV(tj)}, AL, PT )

if p = (bj , b, k) and
w ∈ Vsym is fresh

The strlen function traverses the string using a pointer s that is increased in
each iteration. The loop terminates, since eventually s reaches the last memory
cell of the string (containing 0). Then one jumps to done, converts the pointers s
and str to integers, and returns their difference. To perform the required pointer
arithmetic, “ad2 = getelementptr ty* ad1,in t” increases ad1 by the size of
t elements of type ty (i.e., by size(ty) · t) and assigns this address to ad2.13

getelementptr (p : “ad2 = getelementptr ty* ad1, in t”, ad1, ad2∈VP , t∈VP ∪Z)

(p, LV ] {ad2 = v}, KB , AL, PT )

(p+,LV]{ad2 =w}, KB∪{w = LV(ad1)+size(ty) ·LV(t)}, AL, PT )
w∈Vsym fresh

In Fig. 1, this rule is used for the step from G to H, where LV and KB now
imply s = str + 1. In the step to I, the character at address s is loaded to c.
To ensure memory safety, the load-rule checks that s is in an allocated part of
the memory (i.e., that ustr ≤ ustr + 1 ≤ vend). This holds because 〈H〉 implies
ustr ≤ vend and ustr 6= vend (as ustr ↪→ v1, vend ↪→ 0 ∈ PT and v1 6= 0 ∈ KB).
Finally, we check whether c is 0. We again perform a refinement which yields
the states J and K. State K corresponds to the case c 6= 0 and thus, we obtain
czero = 0 in L and branch back to instruction 0 of the loop block in state M .

2.3 Generalizing Abstract States

After reaching M , one unfolds the loop once more until one reaches a state
M̃ at position (loop, loop, 0) again, analogous to the first iteration. To obtain
finite symbolic execution graphs, we generalize our states whenever an evaluation
visits a program position twice. Thus, we have to find a state that is more general
than M = (p,LVM ,KBM ,AL,PTM ) and M̃ = (p,LV

M̃
,KB

M̃
,AL,PT

M̃
). For

readability, we again write “↪→” instead of “↪→i8”. Then p = (loop, loop, 0) and

13 Since we do not consider the handling of data structures in this paper, we do not
regard getelementptr instructions with more than two parameters.
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AL = {alloc(ustr, vend)}
LVM = {str = ustr, c = v5, s = v4, olds = v3, . . .}
LVM̃ = {str = ustr, c = ṽ5, s = ṽ4, olds = ṽ3, . . .}
PTM = {ustr ↪→ v1, v4 ↪→ v5, vend ↪→ z}
PT M̃ = {ustr ↪→ v1, v4 ↪→ v5, ṽ4 ↪→ ṽ5, vend ↪→ z}
KBM = {v5 6= 0, v4 = v3 + 1, v3 = ustr, v1 6= 0, z = 0, . . .}
KBM̃ = {ṽ5 6= 0, ṽ4 = ṽ3 + 1, ṽ3 = v4, v4 = v3 + 1, v3 = ustr, v1 6= 0, z = 0, . . .}.

Our aim is to construct a new state N that is more general than M and M̃ ,
but contains enough information for the remaining proof. We now present our
heuristic for merging states that is used as the basis for our implementation.

To merge M and M̃ , we keep those constraints of M that also hold in M̃ .
To this end, we proceed in two steps. First, we create a new state N = (p,LVN ,
KBN ,ALN ,PTN ) using fresh symbolic variables vx for all x ∈ VP and define

LVN = {str = vstr, c = vc, s = vs, olds = volds, . . .}.

Matching N ’s fresh variables to the variables in M and M̃ yields mappings with
µM (vstr)=ustr, µM (vc)=v5, µM (vs)=v4, µM (volds)=v3, and µ

M̃
(vstr)=ustr,

µ
M̃

(vc)= ṽ5, µ
M̃

(vs)= ṽ4, µ
M̃

(volds)= ṽ3. By injectivity of LVM , we can also de-

fine a pseudo-inverse of µM that mapsM ’s variables toN by setting µ−1M (LVM (x))
=vx for x∈VP and µ−1M (v)=v for all other v∈Vsym (µ−1

M̃
works analogously).

In a second step, we use these mappings to check which constraints of M
also hold in M̃ . So we set ALN = µ−1M (AL) ∩ µ−1

M̃
(AL) = {alloc(vstr, vend)} and

PTN = µ−1
M (PTM ) ∩ µ−1

M̃
(PT M̃ )

= {vstr ↪→ v1, vs ↪→ vc, vend ↪→ z} ∩ {vstr ↪→ v1, v4 ↪→ v5, vs ↪→ vc, vend ↪→ z}
= {vstr ↪→ v1, vs ↪→ vc, vend ↪→ z}.

It remains to construct KBN . We have v3 =ustr (“olds = str”) in 〈M〉, but

ṽ3 =v4, v4 =v3 + 1, v3 =ustr (“olds=str + 1”) in 〈M̃〉. To keep as much infor-
mation as possible in such cases, we rewrite equations to inequations before per-
forming the generalization. For this, let ⟪M⟫ result from extending 〈M〉 by t1 ≥
t2 and t1 ≤ t2 for any equation t1 = t2 ∈ 〈M〉. So in our example, we obtain v3 ≥
ustr ∈ ⟪M⟫ (“olds ≥ str”). Moreover, for any t1 6= t2 ∈ 〈M〉, we check whether
〈M〉 implies t1 > t2 or t1 < t2, and add the respective inequation to ⟪M⟫. In this
way, one can express sequences of inequations t1 6= t2, t1+1 6= t2, . . . , t1+n 6= t2
(where t1 ≤ t2) by a single inequation t1+n < t2, which is needed for suitable
generalizations afterwards. We use this to derive v4 < vend ∈ ⟪M⟫ (“s < vend”)
from v4 = v3 + 1, v3 = ustr, ustr ≤ vend , ustr 6= vend , v4 6= vend ∈ 〈M〉.

We then let KBN consist of all formulas ϕ from ⟪M⟫ that are also implied

by 〈M̃〉, again translating variable names using µ−1M and µ−1
M̃

. Thus, we have

⟪M⟫ = {v5 6= 0, v4 = v3 + 1, v3 = ustr, v3 ≥ ustr, v4 < vend , . . .}
µ−1
M (⟪M⟫) = {vc 6= 0, vs = volds + 1, volds = vstr, volds ≥ vstr, vs < vend , . . .}
µ−1

M̃
(〈M̃〉) = {vc 6= 0, vs = volds + 1, volds = v4, v4 = v3 + 1, v3 = vstr, vs < vend , . . .}

KBN = {vc 6= 0, vs = volds + 1, volds ≥ vstr, vs < vend , . . .}.
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Definition 3 (Merging States). Let a = (p,LVa,KBa,ALa,PT a) and b =
(p,LVb,KBb,ALb,PT b) be abstract states. Then c = (p,LVc,KBc,ALc,PT c)
results from merging the states a and b if

• LVc = {x = vx | x ∈ VP} for fresh pairwise different symbolic variables vx.
Moreover, we define µa(vx) = LVa(x) and µb(vx) = LVb(x) for all x ∈ VP
and let µa and µb be the identity on all remaining variables from Vsym .

• ALc = µ−1a (ALa) ∩ µ−1b (ALb) and PT c = µ−1a (PT a) ∩ µ−1b (PT b). Here,
the “inverse” of the instantiation µa is defined as µ−1a (v) = vx if v = LVa(x)
and µ−1a (v) = v for all other v ∈ Vsym (µ−1b is defined analogously).

• KBC = { ϕ ∈ µ−1a (⟪a⟫) | |= µ−1b (〈b〉)⇒ ϕ }, where

⟪a⟫ = 〈a〉 ∪ { t1 ≥ t2, t1 ≤ t2 | t1 = t2 ∈ 〈a〉 }
∪ { t1 > t2 | t1 6= t2 ∈ 〈a〉, |= 〈a〉 ⇒ t1 > t2 }
∪ { t1 < t2 | t1 6= t2 ∈ 〈a〉, |= 〈a〉 ⇒ t1 < t2 }.

In Fig. 1, we do not show the second loop unfolding from M to M̃ , and
directly draw a generalization edge from M to N , depicted by a dashed arrow.
Such an edge expresses that all concrete states represented by M are also repre-
sented by the more general state N . Semantically, a state a is a generalization
of a state a iff |= 〈a〉SL ⇒ µ(〈a〉SL) for some instantiation µ. To automate
our procedure, we define a weaker relationship between a and a. We say that
a = (p, LV ,KB ,AL,PT ) is a generalization of a = (p,LV,KB ,AL,PT ) with the
instantiation µ whenever the conditions (b)-(e) of the following rule are satisfied.

generalization with µ
(p,LV,KB ,AL,PT )

(p, LV ,KB ,AL,PT )
if

(a) a has an incoming evaluation edge,14

(b) LV(x) = µ(LV(x)) for all x ∈ VP ,
(c) |= 〈a〉 ⇒ µ(KB),
(d) if alloc(v1, v2) ∈ AL, then alloc(µ(v1), µ(v2)) ∈ AL,
(e) if (v1 ↪→ty v2) ∈ PT , then (µ(v1) ↪→ty µ(v2)) ∈ PT

Clearly, then we indeed have |= 〈a〉SL ⇒ µ(〈a〉SL). Condition (a) is needed
to avoid cycles of refinement and generalization steps in the symbolic execution
graph, which would not correspond to any computation.

Of course, many approaches are possible to compute such generalizations (or
“widenings”). Thm. 4 shows that the merging heuristic from Def. 3 satisfies the
conditions of the generalization rule. Thus, since N results from merging M and
M̃ , it is indeed a generalization of M . Thm. 4 also shows that if one uses the
merging heuristic to compute generalizations, then the construction of symbolic
execution graphs always terminates when applying the following strategy:

• If there is a path from a state a to a state b, where a and b are at the same
program position, where b has an incoming evaluation edge, and where a has
no incoming refinement edge, then we check whether a is a generalization of

14 Evaluation edges are edges that are not refinement or generalization edges.
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b (i.e., whether the corresponding conditions of the generalization rule are
satisfied). In that case, we draw a generalization edge from b to a.

• Otherwise, remove a’s children, and add a generalization edge from a to the
merging c of a and b. If a already had an incoming generalization edge from
some state q, then remove a and add a generalization edge from q to c instead.

Theorem 4 (Soundness and Termination of Merging). Let c result from
merging the states a and b as in Def. 3. Then c is a generalization of a and b
with the instantiations µa and µb, respectively. Moreover, if a is not already a
generalization of b, then |⟪c⟫|+ |ALc|+ |PT c| < |⟪a⟫|+ |ALa|+ |PT a|. Here, for
any conjunction ϕ, let |ϕ| denote the number of its conjuncts. Thus, the above
strategy to construct symbolic execution graphs always terminates.15

In our example, we continue symbolic execution in state N . Similar to the
execution from F to M , after 6 steps another state P at position (loop, loop, 0)
is reached. In Fig. 1, dotted arrows abbreviate several evaluation steps. As N is
again a generalization of P using an instantiation µ with µ(vc) = wc, µ(vs) = ws,
and µ(volds) = wolds, we draw a generalization edge from P to N . The construc-
tion of the symbolic execution graph is finished as soon as all its leaves correspond
to ret instructions (for “return”).

Based on this construction, we now connect the symbolic execution graph to
memory safety of the input program. We say that a concrete LLVM state (p, s,m)
is represented by the symbolic execution graph iff the graph contains an abstract
state a at position p where (s,m) |= σ(〈a〉SL) for some concrete instantiation σ.

Theorem 5 (Memory Safety of LLVM Programs). Let P be an LLVM
program with a symbolic execution graph G. If G does not contain the abstract
state ERR, then P is memory safe for all LLVM states represented by G.

3 From Symbolic Execution Graphs to Integer Systems

To prove termination of the input program, we extract an integer transition
system (ITS) from the symbolic execution graph and then use existing tools to
prove its termination. The extraction step essentially restricts the information
in abstract states to the integer constraints on symbolic variables. This conver-
sion of memory-based arguments into integer arguments often suffices for the
termination proof. The reason for considering only Vsym instead of VP is that
the conditions in the abstract states only concern the symbolic variables and
therefore, these are usually the essential variables for proving termination.

For example, termination of strlen is proved by showing that the pointer
s is increased as long as it is smaller than vend , the symbolic end of the input
string. In Fig. 1, this is explicit since vs < vend is an invariant that holds in all
states represented by N . Each iteration of the cycle increases the value of vs .

Formally, ITSs are graphs whose nodes are abstract states and whose edges
are transitions. For any abstract state a, let V(a) denote the symbolic variables
occurring in a. Let V ⊆ Vsym be the finite set of all symbolic variables occurring

15 The proofs for all theorems can be found in App. B.
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in states of the symbolic execution graph. A transition is a tuple (a,CON , a)
where a, a are abstract states and the condition CON ⊆ QF IA(V ] V ′) is a set
of pure quantifier-free formulas over the variables V ]V ′. Here, V ′ = {v′ | v ∈ V}
represents the values of the variables after the transition. An ITS state (a, σ)
consists of an abstract state a and a concrete instantiation σ : V → Z. For any
such σ, let σ′ : V ′ → Z with σ′(v′) = σ(v). Given an ITS I, (a, σ) evaluates
to (a, σ) (denoted “(a, σ) →I (a, σ)”) iff I has a transition (a,CON , a) with
|= (σ ∪ σ′) (CON ). Here, we have (σ ∪ σ′)(v) = σ(v) and (σ ∪ σ′)(v′) = σ′(v′) =
σ(v) for all v ∈ V. An ITS I is terminating iff →I is well founded.16

We convert symbolic execution graphs to ITSs by transforming every edge
into a transition. If there is a generalization edge from a to a with an instan-
tiation µ, then the new value of any v ∈ V(a) in a is µ(v). Hence, we create
the transition (a, 〈a〉 ∪ {v′ = µ(v) | v ∈ V(a)}, a).17 So for the edge from
P to N in Fig. 1, we obtain the condition {ws = wolds + 1, wolds = vs, vs <
vend , v

′
str = vstr, v

′
end = vend , v

′
c = wc, v

′
s = ws, . . .}. This can be simplified to

{vs < vend , v
′
end = vend , v

′
s = vs + 1, . . .}.

An evaluation or refinement edge from a to a does not change the variables
of V(a). Thus, we construct the transition (a, 〈a〉 ∪ {v′ = v | v ∈ V(a)}, a).

So in the ITS resulting from Fig. 1, the condition of the transition from A to
B contains {v′end = vend}∪ {u′x = ux | x ∈ VP}. The condition for the transition
from B to D is the same, but extended by v′1 = v1. Hence, in the transition
from A to B, the value of v1 can change arbitrarily (since v1 /∈ V(A)), but in
the transition from B to D, the value of v1 must remain the same.

Definition 6 (ITS from Symbolic Execution Graph). Let G be a symbolic
execution graph. Then the corresponding integer transition system IG has one
transition for each edge in G:

• If the edge from a to a is not a generalization edge, then IG has a transition
from a to a with the condition 〈a〉 ∪ {v′ = v | v ∈ V(a)}.

• If there is a generalization edge from a to a with the instantiation µ, then IG
has a transition from a to a with the condition 〈a〉 ∪ {v′ = µ(v) | v ∈ V(a)}.

From the non-generalization edges on the path from N to P in Fig. 1, we
obtain transitions whose conditions contain v′end = vend and v′s = vs. So vs is
increased by 1 in the transition from P to N and it remains the same in all
other transitions of the graph’s only cycle. Since the transition from P to N is
only executed as long as vs < vend holds (where vend is not changed by any
transition), termination of the resulting ITS can easily be proved automatically.

The following theorem shows the soundness of our approach.

Theorem 7 (Termination of LLVM Programs). Let P be an LLVM program
with a symbolic execution graph G that does not contain the state ERR. If IG is
terminating, then P is also terminating for all LLVM states represented by G.

16 For programs starting in states represented by an abstract state a0, it would suffice
to prove termination of all→I-evaluations starting in ITS states of the form (a0, σ).

17 In the transition, we do not impose the additional constraints of 〈a〉 on the post-va-
riables V ′, since they are checked anyway in the next transition which starts in a.
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4 Related Work, Experiments, and Conclusion

We developed a new approach to prove memory safety and termination of C
(resp. LLVM) programs with explicit pointer arithmetic and memory access. It re-
lies on a representation of abstract program states which allows an easy automa-
tion of the rules for symbolic execution (by standard SMT solving). Moreover,
this representation is suitable for generalizing abstract states and for generating
integer transition systems. In this way, LLVM programs are translated fully auto-
matically into ITSs amenable to automated termination analysis.

Previous methods and tools for termination analysis of imperative programs
(e.g., AProVE [4, 5], ARMC [24], COSTA [1], Cyclist [7], FuncTion [28], Julia [25],
KITTeL [12], LoopFrog [27], TAN [16], TRex [14], T2 [6], Ultimate [15], . . . ) either
do not handle the heap at all, or support dynamic data structures by an abstrac-
tion to integers (e.g., to represent sizes or lengths) or to terms (representing finite
unravelings). However, most tools fail when the control flow depends on explicit
pointer arithmetic and on detailed information about the contents of addresses.
While the general methodology of our approach was inspired by our previous
work on termination of Java [4, 5], in the current paper we lift such techniques
to prove termination and memory safety of programs with explicit pointer arith-
metic. This requires a fundamentally new approach, since pointer arithmetic and
memory allocation cannot be expressed in the Java-based techniques of [4, 5].

We implemented our technique in the termination prover AProVE using
the SMT solvers Yices [11] and Z3 [20] in the back-end. A preliminary ver-
sion of our implementation participated very successfully in the International
Competition on Software Verification (SV-COMP) [26] at TACAS, which fea-
tured a category for termination of C programs for the first time in 2014.
To evaluate AProVE’s power, we performed experiments on a collection of 208 C
programs from several sources, including the SV-COMP 2014 termination cate-
gory and standard string algorithms from [29] and the OpenBSD C library [23].
Of these 208 programs, 129 use pointers and 79 only operate on integers.

To prove termination of low-level C programs, one also has to ensure their
memory safety. While there exist several tools to prove memory safety of C
programs, many of them do not handle explicit byte-accurate pointer arithmetic
(e.g., Thor [19] or SLAyer [3]) or require the user to provide the needed loop
invariants (as in the Jessie plug-in of Frama-C [21]). In contrast, our approach
can prove memory safety of such algorithms fully automatically. Although our
approach is targeted toward termination and only analyzes memory safety as a
prerequisite for termination, it turned out that on our collection, AProVE is more
powerful than the leading publicly available tools for proving memory safety. To
this end, we compared AProVE with the tools CPAchecker [18] and Predator [10]
which reached the first and the third place in the category for memory safety at
SV-COMP 2014.18 For the 129 pointer programs in our collection, AProVE can
show memory safety for 102 examples, whereas CPAchecker resp. Predator prove

18 The second place in this category was reached by the bounded model checker LLBMC
[13]. However, in general such tools only disprove, but cannot verify memory safety.
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memory safety for 77 resp. 79 examples (see [2] for details).
To evaluate the power of our approach for proving termination, we compared

AProVE to the other tools from the termination category of SV-COMP 2014. In
addition, we included the termination analyzer KITTeL [12] in our evaluation,

79 integer programs 129 pointer programs

T N F TO RT T N F TO RT

AProVE 67 0 11 1 19.6 91 0 19 19 58.6

FuncTion 11 0 66 2 23.1 - - - - -

KITTeL 58 0 12 9 0.2 9 0 1 119 0.2

T2 55 0 23 1 1.8 6 0 123 0 3.6

TAN 31 0 37 11 2.4 3 0 124 2 10.6

Ultimate 57 4 12 6 3.2 - - - - -

which operates on
LLVM as well. On
the side, we show
the performance of
the tools on in-
teger and pointer
programs when us-
ing a time limit
of 300 seconds for
each example. Here, we used an Intel Core i7-950 processor and 6 GB of mem-
ory. “T” gives the number of examples where termination could be proved, “N”
is the number of examples where non-termination could be shown, “F” states
how often the tool failed in less than 300 seconds, “TO” gives the number of
time-outs (i.e., examples for which the tool took longer than 300 seconds), and
“RT” is the average run time in seconds for those examples where the tool
proved termination or non-termination. For pointer programs, we omitted the
results for those tools that were not able to prove termination of any examples.

Most other termination provers ignore the problem of memory safety and
just prove termination under the assumption that the program is memory safe.
So they may also return “Yes” for memory unsafe programs and may treat read
accesses to the heap as non-deterministic input. Since AProVE constructs sym-
bolic execution graphs to prove memory safety and to infer suitable invariants
needed for termination proofs, its runtime is often higher than that of other tools.
On the other hand, the table shows that our approach is slightly more powerful
than the other tools for integer programs (i.e., our graph-based technique is also
suitable for programs on integers) and it is clearly the most powerful one for
pointer programs. The reason is due to our novel representation of the memory
which handles pointer arithmetic and keeps information about the contents of
addresses. For details on our experiments and to access our implementation in
AProVE via a web interface, we refer to [2]. In future work, we plan to extend
our approach to recursive programs and to inductive data structures defined via
struct (e.g., by integrating existing shape analyses based on separation logic).

Acknowledgments. We are grateful to the developers of the other tools for termina-

tion or memory safety [6, 10, 12, 15, 16, 18, 28] for their help with the experiments.
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A Further Symbolic Execution Rules

In the following, we present symbolic execution rules for additional LLVM in-
structions (in particular, for all instructions occurring in our strlen example).
Our implementation contains rules for several further LLVM instructions that
can be formulated in a similar way.

A.1 store instruction

The rule for store is analogous to the rule for load. The instruction “store
ty t, ty* ad” stores the value t of type ty at the address ad. Again, we check
whether LV(ad), . . . ,LV(ad) + size(ty)− 1 are addresses in an allocated part of
the memory. Of course, the information that ad now points to t should be added
to the set PT . All other information in PT that is not influenced by this change
can be kept.19

store to allocated memory (p : “store ty t, ty* ad”, t∈VP∪Z, ad∈VP)

(p, LV, KB , AL, PT )

(p+, LV, KB∪{v = LV(t)}, AL, PT∪{LV(ad) ↪→ty v})
if

• there is alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2),
• PT = {(w1 ↪→sy w2) ∈ PT |

|= 〈a〉 ⇒ ( [LV(ad), LV(ad)+size(ty)−1 ] ⊥ [w1, w1+size(sy)−1] )},
• v ∈ Vsym is fresh

In Sect. 2.2, we also presented a load-rule for the case where the addresses
LV(ad), . . . ,LV(ad)+size(ty)−1 are not allocated. An analogous rule is used for
violations of memory safety caused by the instruction “store ty t, ty* ad”.

store to unallocated memory (p : “store ty t, ty* ad”, t∈VP∪Z, ad∈VP)

(p,LV,KB ,AL,PT )

ERR
if

there is no alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2)

A.2 alloca instruction

Now we present a rule for the alloca statement. The instruction “x = alloca

ty, in t” allocates memory for t elements of the type ty. Here, x is an identifier
from VP of type ty* and t is either an identifier or a natural number. Thus, a
new interval is allocated (i.e., AL is extended by alloc(v1, v2) for fresh symbolic
variables v1, v2) and KB is extended by v2 = v1 + size(ty) · LV(t). Moreover,
the address of the first memory cell in the newly allocated block is assigned to
x. Thus, we update LV by x = v1.

19 For any terms, “[t1, t2] ⊥ [t1, t2]” is a shorthand for t2 < t1 ∨ t2 < t1.
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alloca (p : “x = alloca ty, in t” with x ∈ VP and t ∈ VP ∪ Z)

(p, LV ] {x = v}, KB , AL, PT )

(p+, LV ] {x = v1}, KB ∪ {v2 = v1 + size(ty) · LV(t)}, AL ∪ {alloc(v1, v2)}, PT )

if |= 〈a〉 ⇒ (LV(t) > 0) and v1, v2 ∈ Vsym are fresh

To ease the presentation, in this paper we only consider programs which al-
locate memory on the stack (using alloca), but we do not consider allocation or
deallocation on the heap (using malloc and free). The reason is that the latest
releases of LLVM do not have built-in malloc or free instructions anymore, but
one would have to call them as external functions (provided by the standard
C library). However, we restricted ourselves to the analysis of a single LLVM
function.

In fact, LLVM does not explicitly distinguish between the heap and stack,
but applies the same memory model for both (using load and store). The only
difference is that memory acquired by alloca is automatically deallocated at
the end of the function. So we need not consider the additional book-keeping
required to keep track of malloc and free, which would be orthogonal to our
contribution.

A.3 br instruction (unconditional)

The instruction “br label bnext” means that the execution has to continue with
the first instruction in the block bnext . It is similar to the conditional branch
instruction in Sect. 2.2.

br (p : “br label bnext” with bnext ∈ Blks)

(p,LV,KB ,AL,PT )

((b, bnext , 0),LV,KB ,AL,PT )
if p = (bprev , b, i)

A.4 Refining abstract states for the conditional br instruction

Similar to the refinement rule in Sect. 2.2, an analogous refinement rule is also
used for conditional branching instructions, if the current knowledge base does
not contain enough information to decide whether the condition of the br in-
struction is true or false.

refining abstract states (p : “br i1 t, label b1, label b2”)

(p, LV, KB , AL, PT )

(p, LV, KB ∪ {LV(t) = 1}, AL, PT ) | (p, LV, KB ∪ {LV(t) 6= 1}, AL, PT )

if 6|= 〈a〉⇒(LV(t) = 1) and 6|= 〈a〉⇒(LV(t) 6= 1)
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A.5 sub instruction

The next rule handles statements of the form “x = sub ty t1, t2”. Here, both
t1 and t2 must have the type ty and the variable x also gets this type. Of course,
in a similar way one can also handle other instructions for arithmetic operations
in LLVM, e.g., add.

sub (p : “x = sub ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV ] {x = v}, KB , AL, PT )

(p+,LV ] {x = w}, KB ∪ {w = LV(t1)− LV(t2)}, AL, PT )
with w ∈ Vsym fresh

A.6 ptrtoint instruction

Finally, we present a rule for the ptrtoint instruction. It simply converts point-
ers to integers and is needed to perform subsequent arithmetic operations on
them (e.g., to subtract one address from another in the strlen algorithm).

ptrtoint (p : “x = ptrtoint ty* ad to in” with x, ad ∈ VP)

(p, LV ] {x = v}, KB , AL, PT )

(p+,LV]{x = w}, KB ∪{w = LV(ad)}, AL, PT )
with w ∈ Vsym fresh
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B Proofs

Theorem 4 (Soundness and Termination of Merging). Let c result from
merging the states a and b as in Def. 3. Then c is a generalization of a and b
with the instantiations µa and µb, respectively. Moreover, if a is not already a
generalization of b, then |⟪c⟫|+ |ALc|+ |PT c| < |⟪a⟫|+ |ALa|+ |PT a|. Here, for
any conjunction ϕ, let |ϕ| denote the number of its conjuncts. Thus, the strategy
in Sect. 2.3 to construct symbolic execution graphs always terminates.

Proof. To show that c is a generalization of a and b with the instantiations µa

and µb, respectively, we have to prove that the conditions (b)-(e) of the general-
ization rule in Sect. 2.3 are satisfied. By definition, we have LVa(x) = µa(vx) =
µa(LVc(x)) and LVb(x) = µb(LVc(x)) for all x ∈ VP , which proves (b). Moreover,
for alloc(v1, v2) ∈ ALc, we have alloc(v1, v2) ∈ µ−1a (ALa) and alloc(v1, v2) ∈
µ−1b (ALb). This implies alloc(µa(v1), µa(v2)) ∈ ALa and alloc(µb(v1), µb(v2)) ∈
ALb, which proves (d). Condition (e) on PT c can be proved in a similar way.

It remains to prove (c). As KBc ⊆ µ−1a (⟪a⟫), we have |= ⟪a⟫ ⇒ µa(KBc)
and therefore also |= 〈a〉 ⇒ µa(KBc). Moreover, as |= µ−1b (〈b〉) ⇒ ϕ holds
for all ϕ ∈ KBc, we also have |= 〈b〉 ⇒ µb(KBc). Note that we even have
|= 〈a〉 ⇒ µa(〈c〉) and |= 〈b〉 ⇒ µb(〈c〉).

Finally, we have to show that |⟪c⟫|+ |ALc|+ |PT c| < |⟪a⟫|+ |ALa|+ |PT a|
if a is not a generalization of b.

We first show that ⟪c⟫ = 〈c〉. The reason is that whenever there is a t1 =
t2 ∈ 〈c〉, then we have t1 = t2 ∈ µ−1a (⟪a⟫) and thus also t1 ≥ t2, t1 ≤ t2 ∈
µ−1a (⟪a⟫). As |= µ−1b (〈b〉) ⇒ t1 = t2 also implies |= µ−1b (〈b〉) ⇒ t1 ≥ t2 and
|= µ−1b (〈b〉) ⇒ t1 ≤ t2, we also have t1 ≥ t2, t1 ≤ t2 ∈ 〈c〉. Moreover, suppose
that t1 6= t2 ∈ 〈c〉 and |= 〈c〉 ⇒ t1 > t2. This implies |= µ−1a (〈a〉) ⇒ t1 > t2
(i.e., t1 > t2 ∈ µ−1a (⟪a⟫)) and |= µ−1b (〈b〉) ⇒ t1 > t2. Hence, we also have
t1 > t2 ∈ 〈c〉. The case where t1 6= t2 ∈ 〈c〉 and |= 〈c〉 ⇒ t1 < t2 is analogous.

Next note that 〈c〉 = KBc. Again the reason is that for any ϕ ∈ 〈c〉 we
have ϕ ∈ µ−1a (⟪a⟫) and |= µ−1b (〈b〉) ⇒ ϕ. Thus, we only have to show that
|KBc|+ |ALc|+ |PT c| < |⟪a⟫|+ |ALa|+ |PT a|. From the definition, it is obvious
that we always have |KBc| ≤ |⟪a⟫|, |ALc| ≤ |ALa|, and |PT c| ≤ |PT a|.

Hence, it suffices to show that if |KBc| = |⟪a⟫|, |ALc| = |ALa|, and |PT c| =
|PT a|, then a would be a generalization of b with the instantiation µb ◦ µ−1a .
To see this, note that we have LVb(x) = µb(vx) = µb(µ

−1
a (LVa(x))), i.e., condi-

tion (b) of the generalization rule is satisfied. Clearly, |ALc| = |ALa| means that
µ−1a (ALa) = µ−1b (ALb). Thus, if alloc(v1, v2) ∈ ALa, then alloc(µ−1a (v1), µ−1a (v2))
∈ µ−1a (ALa) = µ−1b (ALb) and hence, alloc(µb(µ

−1
a (v1)), µb(µ

−1
a (v2))) ∈ ALb,

which shows condition (d). Condition (e) follows from |PT c| = |PT a| for a sim-
ilar reason. Finally, |KBc| = |⟪a⟫| means that for all ϕ ∈ µ−1a (⟪a⟫), we have
|= µ−1b (〈b〉)⇒ ϕ. Let ψ ∈ µb(µ

−1
a (KBa)). Then we have µ−1b (ψ) ∈ µ−1a (KBa) ⊆

µ−1a (⟪a⟫). Hence, we can infer |= µ−1b (〈b〉)⇒ µ−1b (ψ) which implies |= 〈b〉 ⇒ ψ,
cf. condition (c). ut
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Theorem 5 (Memory Safety of LLVM Programs). Let P be an LLVM
program with a symbolic execution graph G. If G does not contain the abstract
state ERR, then P is memory safe for all LLVM states represented by G.

Proof. Let (p, s,m) →LLVM (p, s,m), where (p, s,m) is represented by the sym-
bolic execution graph G. So G contains an abstract state a with (s,m) |= σ(〈a〉SL)
for some concrete instantiation σ. As the definition of the symbolic execution
graph directly follows the operational semantics of LLVM [17, 30], we immedi-
ately obtain the following:

(a) If a’s outgoing edge is an evaluation edge, then for a’s successor a, we have
(s,m) |= σ(〈a〉SL) for a concrete instantiation σ with σ(v) = σ(v) for all
v ∈ V(a). Here, let V(a) denote all symbolic variables occurring in a.

(b) If a’s outgoing edges are refinement edges, then one of its successors ã has
an evaluation edge to another abstract state a, where (s,m) |= σ(〈a〉SL) for
a concrete instantiation σ with σ(v) = σ(v) for all v ∈ V(a).

(c) If a’s outgoing edge is a generalization edge to a state ã with some instan-
tiation µ, and ã has an evaluation edge to another abstract state a, then
(s,m) |= σ(〈a〉SL) for a concrete instantiation σ with σ(v) = σ(µ(v)) for all
v ∈ V(ã).

(d) Otherwise, a’s outgoing edge is a generalization edge to a state ã with some
instantiation µ, ã has a refinement edge to a successor â, and there is an
evaluation edge from â to another abstract state a, where (s,m) |= σ(〈a〉SL)
for a concrete instantiation σ with σ(v) = σ(µ(v)) for all v ∈ V(ã).

Thus, in all cases, (p, s,m) is also represented by G.

Similarly, if (p, s,m) is represented by the abstract state a in the graph G,
then (p, s,m) →LLVM ERR implies that there is an edge from a to ERR in G.
Thus, if the graph G does not contain ERR, then P is memory safe for all states
represented by G. ut

Theorem 7 (Termination of LLVM Programs). Let P be an LLVM program
with a symbolic execution graph G that does not contain the state ERR. If IG is
terminating, then P is also terminating for all LLVM states represented by G.

Proof. Let (p, s,m) →LLVM (p, s,m), where (p, s,m) is represented by the sym-
bolic execution graph G. We show that if G does not contain ERR, then termi-
nation of the ITS IG implies termination of P for all states represented by G. To
this end, let (p, s,m)→LLVM (p, s,m), where G contains an abstract state a with
(s,m) |= σ(〈a〉SL) for some concrete instantiation σ. In the proof of Thm. 5, we
showed that there is an abstract state a in G and a concrete instantiation σ with
(s,m) |= σ(〈a〉SL). In the following, we show that we also have (a, σ)→+

IG (a, σ).
This suffices to prove Thm. 7. The reason is that if there is an infinite →LLVM-
evaluation starting with an LLVM state represented by G, then there is also
a corresponding infinite evaluation with the ITS IG . Hence, termination of IG
implies termination of the LLVM program P for all states represented by G.
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(a) In case (a), the abstract state a has an evaluation edge to a, where σ(v) =
σ(v) for all v ∈ V(a). We show that then we have (a, σ)→IG (a, σ).
Note that IG has a transition (a, 〈a〉∪{v′ = v | v ∈ V(a)}, a). Hence, we have
to show that (σ ∪ σ′) satisfies the condition of this transition. We have20

|= (σ ∪ σ′) (〈a〉), since

|= σ(〈a〉), since

(s,m) |= σ(〈a〉), since

(s,m) |= σ(〈a〉SL).

Moreover, for all v ∈ V(a), we have

(σ ∪ σ′)(v′) = σ′(v′) = σ(v) = σ(v) = (σ ∪ σ′)(v).

(b) In case (b), there is a path consisting of a refinement and a subsequent
evaluation edge from a to a and σ(v) = σ(v) for all v ∈ V(a). We show that
then we have (a, σ)→+

IG (a, σ).
To see this, note that in a’s two successors, the knowledge base is extended
by ϕ and ¬ϕ for some formula ϕ, respectively. If |= σ(ϕ), then let ã be the

successor with the knowledge base K̃B = KB ∪{ϕ}. Otherwise, let ã be the

successor with the knowledge base K̃B = KB ∪ {¬ϕ}. So in both cases, we

have |= σ(K̃B) and thus, (s,m) |= σ(〈ã〉SL). Hence, (ã, σ)→IG (a, σ) can be
shown as in (a).
It remains to show (a, σ) →IG (ã, σ). Clearly, IG has a transition (a, 〈a〉 ∪
{v′ = v | v ∈ V(a)}, ã). As in (a), one can show that (σ ∪ σ′) satisfies the
condition of this transition.

(c) In case (c), a has an generalization edge to ã with the instantiation µ and
an evaluation edge from ã to a, where σ(v) = σ(µ(v)) for all v ∈ V(ã). We
show that then we have (a, σ)→IG (ã, σ ◦ µ)→IG (a, σ).
To see this, we start with proving (a, σ)→IG (ã, σ◦µ). Due to the generaliza-
tion edge from a to ã, IG has the transition (a, 〈a〉∪{v′ = µ(v) | v ∈ V(ã)}, ã).
So we have to show that (σ∪(σ◦µ)′) satisfies the condition of this transition.
We have

|= (σ ∪ (σ ◦ µ)′) (〈a〉), since

|= σ(〈a〉), since

(s,m) |= σ(〈a〉), since

(s,m) |= σ(〈a〉SL).

Moreover, for all v ∈ V(ã), we have

(σ ∪ (σ ◦ µ)′)(v′) = (σ ◦ µ)′(v′) = σ(µ(v)) = (σ ∪ (σ ◦ µ)′)(µ(v)).

Now we have to show (ã, σ ◦µ)→IG (a, σ). As there is a generalization edge
from a to ã with the instantiation µ, we know that |= 〈a〉SL ⇒ µ(〈ã〉SL).
Thus, (s,m) |= σ(〈a〉SL) implies (s,m) |= (σ◦µ)(〈ã〉SL). Hence, (ã, σ◦µ)→IG
(a, σ) follows as in (a).

20 Note that since σ is a concrete instantiation (i.e., σ(〈a〉) does not contain any vari-
ables), (s,m) |= σ(〈a〉) implies |= σ(〈a〉).
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(d) Finally, we consider the case where a has a generalization edge to ã with
the instantiation µ, and there is a path consisting of a refinement and an
evaluation edge from ã to a, where σ(v) = σ(µ(v)) for all v ∈ V(ã). We show
that then we have (a, σ)→IG (ã, σ ◦ µ)→+

IG (a, σ).

Here, (a, σ)→IG (ã, σ ◦ µ) follows as in (c), and (ã, σ ◦ µ)→+
IG (a, σ) can be

proved as in (b). ut
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2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your
Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes
2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.
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2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM
2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code
with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-
sentials 2013



2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination
proving through cooperation
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