let R be the TRS under consideration f(_1,h(_2)) -> f(f(h(a),_2),_1) is in elim_R(R) let r0 be the right-hand side of this rule p0 = epsilon is a position in r0 we have r0|p0 = f(f(h(a),_2),_1) f(_3,h(_4)) -> h(f(f(h(a),_4),_3)) is in R let l'0 be the left-hand side of this rule theta0 = {_1/h(_4), _3/f(h(a),_2)} is a mgu of r0|p0 and l'0 ==> f(h(_1),h(_2)) -> f(f(h(a),_1),f(h(a),_2)) is in EU_R^1 let r1 be the right-hand side of this rule p1 = 0 is a position in r1 we have r1|p1 = f(h(a),_1) f(_3,h(_4)) -> h(f(f(h(a),_4),_3)) is in R let l'1 be the left-hand side of this rule theta1 = {_1/h(_4), _3/h(a)} is a mgu of r1|p1 and l'1 ==> f(h(h(_1)),h(_2)) -> f(h(f(f(h(a),_1),h(a))),f(h(a),_2)) is in EU_R^2 let r2 be the right-hand side of this rule p2 = 0.0 is a position in r2 we have r2|p2 = f(f(h(a),_1),h(a)) f(_3,h(_4)) -> h(f(f(h(a),_4),_3)) is in R let l'2 be the left-hand side of this rule theta2 = {_3/f(h(a),_1), _4/a} is a mgu of r2|p2 and l'2 ==> f(h(h(_1)),h(_2)) -> f(h(h(f(f(h(a),a),f(h(a),_1)))),f(h(a),_2)) is in EU_R^3 let r3 be the right-hand side of this rule p3 = 1 is a position in r3 we have r3|p3 = f(h(a),_2) f(_3,h(_4)) -> h(f(f(h(a),_4),_3)) is in R let l'3 be the left-hand side of this rule theta3 = {_2/h(_4), _3/h(a)} is a mgu of r3|p3 and l'3 ==> f(h(h(_1)),h(h(_2))) -> f(h(h(f(f(h(a),a),f(h(a),_1)))),h(f(f(h(a),_2),h(a)))) is in EU_R^4 let r4 be the right-hand side of this rule p4 = 1.0 is a position in r4 we have r4|p4 = f(f(h(a),_2),h(a)) f(_3,h(_4)) -> h(f(f(h(a),_4),_3)) is in R let l'4 be the left-hand side of this rule theta4 = {_3/f(h(a),_2), _4/a} is a mgu of r4|p4 and l'4 ==> f(h(h(_1)),h(h(_2))) -> f(h(h(f(f(h(a),a),f(h(a),_1)))),h(h(f(f(h(a),a),f(h(a),_2))))) is in EU_R^5 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {} let theta' = {_1/f(f(h(a),a),f(h(a),_1)), _2/f(f(h(a),a),f(h(a),_2))} we have r|p = f(h(h(f(f(h(a),a),f(h(a),_1)))),h(h(f(f(h(a),a),f(h(a),_2))))) and theta'(theta(l)) = theta(r|p) so, theta(l) = f(h(h(_1)),h(h(_2))) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=5, depth k=6 40 rule(s) generated