(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isListU11(isNeList)
isListtt
isListU21(isList)
isNeListU31(isQid)
isNeListU41(isList)
isNeListU51(isNeList)
isNePalU61(isQid)
isNePalU71(isQid)
isPalU81(isNePal)
isPaltt
isQidtt

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(U11(x1)) = x1   
POL(U21(x1)) = 2·x1   
POL(U22(x1)) = x1   
POL(U31(x1)) = 2·x1   
POL(U41(x1)) = x1   
POL(U42(x1)) = x1   
POL(U51(x1)) = x1   
POL(U52(x1)) = 2·x1   
POL(U61(x1)) = 2·x1   
POL(U71(x1)) = 2·x1   
POL(U72(x1)) = x1   
POL(U81(x1)) = 2·x1   
POL(__(x1, x2)) = 2 + 2·x1 + x2   
POL(isList) = 0   
POL(isNeList) = 0   
POL(isNePal) = 0   
POL(isPal) = 0   
POL(isQid) = 0   
POL(nil) = 0   
POL(tt) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isListU11(isNeList)
isListtt
isListU21(isList)
isNeListU31(isQid)
isNeListU41(isList)
isNeListU51(isNeList)
isNePalU61(isQid)
isNePalU71(isQid)
isPalU81(isNePal)
isPaltt
isQidtt

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(U11(x1)) = x1   
POL(U21(x1)) = 2·x1   
POL(U22(x1)) = 2·x1   
POL(U31(x1)) = 2·x1   
POL(U41(x1)) = 2·x1   
POL(U42(x1)) = x1   
POL(U51(x1)) = 2·x1   
POL(U52(x1)) = 2·x1   
POL(U61(x1)) = 1 + 2·x1   
POL(U71(x1)) = 1 + 2·x1   
POL(U72(x1)) = x1   
POL(U81(x1)) = x1   
POL(isList) = 0   
POL(isNeList) = 0   
POL(isNePal) = 1   
POL(isPal) = 1   
POL(isQid) = 0   
POL(tt) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

U61(tt) → tt
isPaltt


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isListU11(isNeList)
isListtt
isListU21(isList)
isNeListU31(isQid)
isNeListU41(isList)
isNeListU51(isNeList)
isNePalU61(isQid)
isNePalU71(isQid)
isPalU81(isNePal)
isQidtt

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(U11(x1)) = 2·x1   
POL(U21(x1)) = 2·x1   
POL(U22(x1)) = x1   
POL(U31(x1)) = x1   
POL(U41(x1)) = 2·x1   
POL(U42(x1)) = x1   
POL(U51(x1)) = x1   
POL(U52(x1)) = 2·x1   
POL(U61(x1)) = 2·x1   
POL(U71(x1)) = 1 + 2·x1   
POL(U72(x1)) = x1   
POL(U81(x1)) = x1   
POL(isList) = 0   
POL(isNeList) = 0   
POL(isNePal) = 1   
POL(isPal) = 1   
POL(isQid) = 0   
POL(tt) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

isNePalU61(isQid)


(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isListU11(isNeList)
isListtt
isListU21(isList)
isNeListU31(isQid)
isNeListU41(isList)
isNeListU51(isNeList)
isNePalU71(isQid)
isPalU81(isNePal)
isQidtt

Q is empty.

(7) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt) → U221(isList)
U211(tt) → ISLIST
U411(tt) → U421(isNeList)
U411(tt) → ISNELIST
U511(tt) → U521(isList)
U511(tt) → ISLIST
U711(tt) → U721(isPal)
U711(tt) → ISPAL
ISLISTU111(isNeList)
ISLISTISNELIST
ISLISTU211(isList)
ISLISTISLIST
ISNELISTU311(isQid)
ISNELISTISQID
ISNELISTU411(isList)
ISNELISTISLIST
ISNELISTU511(isNeList)
ISNELISTISNELIST
ISNEPALU711(isQid)
ISNEPALISQID
ISPALU811(isNePal)
ISPALISNEPAL

The TRS R consists of the following rules:

U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isListU11(isNeList)
isListtt
isListU21(isList)
isNeListU31(isQid)
isNeListU41(isList)
isNeListU51(isNeList)
isNePalU71(isQid)
isPalU81(isNePal)
isQidtt

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes.

(10) Complex Obligation (AND)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(tt) → ISPAL
ISPALISNEPAL
ISNEPALU711(isQid)

The TRS R consists of the following rules:

U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isListU11(isNeList)
isListtt
isListU21(isList)
isNeListU31(isQid)
isNeListU41(isList)
isNeListU51(isNeList)
isNePalU71(isQid)
isPalU81(isNePal)
isQidtt

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [ ] on the rule
U711(tt)[ ]n[ ] → U711(tt)[ ]n[ ]
This rule is correct for the QDP as the following derivation shows:

U711(tt)[ ]n[ ] → U711(tt)[ ]n[ ]
    by Narrowing at position: [0]
        U711(tt)[ ]n[ ] → U711(isQid)[ ]n[ ]
            by Narrowing at position: []
                U711(tt)[ ]n[ ] → ISNEPAL[ ]n[ ]
                    by Narrowing at position: []
                        U711(tt)[ ]n[ ] → ISPAL[ ]n[ ]
                            by OriginalRule from TRS P

                        ISPAL[ ]n[ ] → ISNEPAL[ ]n[ ]
                            by OriginalRule from TRS P

                ISNEPAL[ ]n[ ] → U711(isQid)[ ]n[ ]
                    by OriginalRule from TRS P

        isQid[ ]n[ ] → tt[ ]n[ ]
            by OriginalRule from TRS R

(13) NO

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt) → ISLIST
ISLISTISNELIST
ISNELISTU411(isList)
U411(tt) → ISNELIST
ISNELISTISLIST
ISLISTU211(isList)
ISLISTISLIST
ISNELISTU511(isNeList)
U511(tt) → ISLIST
ISNELISTISNELIST

The TRS R consists of the following rules:

U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isListU11(isNeList)
isListtt
isListU21(isList)
isNeListU31(isQid)
isNeListU41(isList)
isNeListU51(isNeList)
isNePalU71(isQid)
isPalU81(isNePal)
isQidtt

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [ ] on the rule
ISLIST[ ]n[ ] → ISLIST[ ]n[ ]
This rule is correct for the QDP as the following derivation shows:

ISLIST[ ]n[ ] → ISLIST[ ]n[ ]
    by OriginalRule from TRS P

(16) NO