(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(U11(x1)) = 2·x1
POL(U12(x1)) = x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = x1
POL(U23(x1)) = x1
POL(U24(x1)) = 2·x1
POL(U25(x1)) = 2·x1
POL(U26(x1)) = 2·x1
POL(U31(x1)) = 2·x1
POL(U32(x1)) = x1
POL(U33(x1)) = 2·x1
POL(U41(x1)) = 2·x1
POL(U42(x1)) = x1
POL(U43(x1)) = x1
POL(U44(x1)) = 2·x1
POL(U45(x1)) = 2·x1
POL(U46(x1)) = 2·x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = x1
POL(U53(x1)) = x1
POL(U54(x1)) = x1
POL(U55(x1)) = 2·x1
POL(U56(x1)) = x1
POL(U61(x1)) = x1
POL(U62(x1)) = 2·x1
POL(U63(x1)) = x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = 2·x1
POL(U73(x1)) = 2·x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = 2·x1
POL(U82(x1)) = 2·x1
POL(U83(x1)) = x1
POL(U91(x1)) = x1
POL(U92(x1)) = x1
POL(__(x1, x2)) = 1 + 2·x1 + x2
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isPalListKind) = 0
POL(isQid) = 0
POL(nil) = 2
POL(tt) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(U11(x1)) = 2·x1
POL(U12(x1)) = 2·x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U22(x1)) = 2·x1
POL(U23(x1)) = x1
POL(U24(x1)) = x1
POL(U25(x1)) = x1
POL(U26(x1)) = x1
POL(U31(x1)) = 2·x1
POL(U32(x1)) = 2·x1
POL(U33(x1)) = x1
POL(U41(x1)) = x1
POL(U42(x1)) = 2·x1
POL(U43(x1)) = 2·x1
POL(U44(x1)) = x1
POL(U45(x1)) = x1
POL(U46(x1)) = 2·x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = x1
POL(U53(x1)) = 2·x1
POL(U54(x1)) = 2·x1
POL(U55(x1)) = 2·x1
POL(U56(x1)) = 2·x1
POL(U61(x1)) = x1
POL(U62(x1)) = x1
POL(U63(x1)) = x1
POL(U71(x1)) = 1 + 2·x1
POL(U72(x1)) = 1 + x1
POL(U73(x1)) = x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = 1 + x1
POL(U82(x1)) = 1 + 2·x1
POL(U83(x1)) = x1
POL(U91(x1)) = 2·x1
POL(U92(x1)) = x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 1
POL(isPal) = 1
POL(isPalListKind) = 0
POL(isQid) = 0
POL(tt) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNePal → U61(isPalListKind)
isPal → tt
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
(5) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(U11(x1)) = 2·x1
POL(U12(x1)) = x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U22(x1)) = 2·x1
POL(U23(x1)) = 2·x1
POL(U24(x1)) = 2·x1
POL(U25(x1)) = 2·x1
POL(U26(x1)) = x1
POL(U31(x1)) = x1
POL(U32(x1)) = 2·x1
POL(U33(x1)) = 2·x1
POL(U41(x1)) = x1
POL(U42(x1)) = x1
POL(U43(x1)) = 2·x1
POL(U44(x1)) = 2·x1
POL(U45(x1)) = 2·x1
POL(U46(x1)) = x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = 2·x1
POL(U53(x1)) = x1
POL(U54(x1)) = 2·x1
POL(U55(x1)) = x1
POL(U56(x1)) = 2·x1
POL(U61(x1)) = 2 + 2·x1
POL(U62(x1)) = 2 + 2·x1
POL(U63(x1)) = 1 + x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = 2·x1
POL(U73(x1)) = 2·x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = 2·x1
POL(U82(x1)) = 2·x1
POL(U83(x1)) = x1
POL(U91(x1)) = x1
POL(U92(x1)) = 2·x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isPalListKind) = 0
POL(isQid) = 0
POL(tt) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
U62(tt) → U63(isQid)
U63(tt) → tt
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
(7) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(U11(x1)) = 2·x1
POL(U12(x1)) = x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U22(x1)) = x1
POL(U23(x1)) = 2·x1
POL(U24(x1)) = 2·x1
POL(U25(x1)) = 2·x1
POL(U26(x1)) = x1
POL(U31(x1)) = x1
POL(U32(x1)) = 2·x1
POL(U33(x1)) = 2·x1
POL(U41(x1)) = x1
POL(U42(x1)) = 2·x1
POL(U43(x1)) = x1
POL(U44(x1)) = 2·x1
POL(U45(x1)) = 2·x1
POL(U46(x1)) = 2·x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = x1
POL(U53(x1)) = x1
POL(U54(x1)) = 2·x1
POL(U55(x1)) = x1
POL(U56(x1)) = 2·x1
POL(U61(x1)) = 1 + 2·x1
POL(U62(x1)) = x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = 2·x1
POL(U73(x1)) = 2·x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = 2·x1
POL(U82(x1)) = 2·x1
POL(U83(x1)) = 2·x1
POL(U91(x1)) = x1
POL(U92(x1)) = x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isPalListKind) = 0
POL(isQid) = 0
POL(tt) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
U61(tt) → U62(isPalListKind)
(8) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
(9) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U111(tt) → U121(isPalListKind)
U111(tt) → ISPALLISTKIND
U121(tt) → U131(isNeList)
U121(tt) → ISNELIST
U211(tt) → U221(isPalListKind)
U211(tt) → ISPALLISTKIND
U221(tt) → U231(isPalListKind)
U221(tt) → ISPALLISTKIND
U231(tt) → U241(isPalListKind)
U231(tt) → ISPALLISTKIND
U241(tt) → U251(isList)
U241(tt) → ISLIST
U251(tt) → U261(isList)
U251(tt) → ISLIST
U311(tt) → U321(isPalListKind)
U311(tt) → ISPALLISTKIND
U321(tt) → U331(isQid)
U321(tt) → ISQID
U411(tt) → U421(isPalListKind)
U411(tt) → ISPALLISTKIND
U421(tt) → U431(isPalListKind)
U421(tt) → ISPALLISTKIND
U431(tt) → U441(isPalListKind)
U431(tt) → ISPALLISTKIND
U441(tt) → U451(isList)
U441(tt) → ISLIST
U451(tt) → U461(isNeList)
U451(tt) → ISNELIST
U511(tt) → U521(isPalListKind)
U511(tt) → ISPALLISTKIND
U521(tt) → U531(isPalListKind)
U521(tt) → ISPALLISTKIND
U531(tt) → U541(isPalListKind)
U531(tt) → ISPALLISTKIND
U541(tt) → U551(isNeList)
U541(tt) → ISNELIST
U551(tt) → U561(isList)
U551(tt) → ISLIST
U711(tt) → U721(isPalListKind)
U711(tt) → ISPALLISTKIND
U721(tt) → U731(isPal)
U721(tt) → ISPAL
U731(tt) → U741(isPalListKind)
U731(tt) → ISPALLISTKIND
U811(tt) → U821(isPalListKind)
U811(tt) → ISPALLISTKIND
U821(tt) → U831(isNePal)
U821(tt) → ISNEPAL
U911(tt) → U921(isPalListKind)
U911(tt) → ISPALLISTKIND
ISLIST → U111(isPalListKind)
ISLIST → ISPALLISTKIND
ISLIST → U211(isPalListKind)
ISNELIST → U311(isPalListKind)
ISNELIST → ISPALLISTKIND
ISNELIST → U411(isPalListKind)
ISNELIST → U511(isPalListKind)
ISNEPAL → U711(isQid)
ISNEPAL → ISQID
ISPAL → U811(isPalListKind)
ISPAL → ISPALLISTKIND
ISPALLISTKIND → U911(isPalListKind)
ISPALLISTKIND → ISPALLISTKIND
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 30 less nodes.
(12) Complex Obligation (AND)
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U911(tt) → ISPALLISTKIND
ISPALLISTKIND → U911(isPalListKind)
ISPALLISTKIND → ISPALLISTKIND
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) NonLoopProof (EQUIVALENT transformation)
By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [ ] on the rule
ISPALLISTKIND[ ]n[ ] → ISPALLISTKIND[ ]n[ ]
This rule is correct for the QDP as the following derivation shows:
ISPALLISTKIND[ ]n[ ] → ISPALLISTKIND[ ]n[ ]
by OriginalRule from TRS P
(15) NO
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U721(tt) → ISPAL
ISPAL → U811(isPalListKind)
U811(tt) → U821(isPalListKind)
U821(tt) → ISNEPAL
ISNEPAL → U711(isQid)
U711(tt) → U721(isPalListKind)
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) NonLoopProof (EQUIVALENT transformation)
By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [ ] on the rule
U721(tt)[ ]n[ ] → U721(tt)[ ]n[ ]
This rule is correct for the QDP as the following derivation shows:
U721(tt)[ ]n[ ] → U721(tt)[ ]n[ ]
by Narrowing at position: [0]
U721(tt)[ ]n[ ] → U721(isPalListKind)[ ]n[ ]
by Narrowing at position: []
U721(tt)[ ]n[ ] → U711(tt)[ ]n[ ]
by Narrowing at position: [0]
U721(tt)[ ]n[ ] → U711(isQid)[ ]n[ ]
by Narrowing at position: []
U721(tt)[ ]n[ ] → ISNEPAL[ ]n[ ]
by Narrowing at position: []
U721(tt)[ ]n[ ] → U821(tt)[ ]n[ ]
by Narrowing at position: [0]
U721(tt)[ ]n[ ] → U821(isPalListKind)[ ]n[ ]
by Narrowing at position: []
U721(tt)[ ]n[ ] → U811(tt)[ ]n[ ]
by Narrowing at position: [0]
U721(tt)[ ]n[ ] → U811(isPalListKind)[ ]n[ ]
by Narrowing at position: []
U721(tt)[ ]n[ ] → ISPAL[ ]n[ ]
by OriginalRule from TRS P
ISPAL[ ]n[ ] → U811(isPalListKind)[ ]n[ ]
by OriginalRule from TRS P
isPalListKind[ ]n[ ] → tt[ ]n[ ]
by OriginalRule from TRS R
U811(tt)[ ]n[ ] → U821(isPalListKind)[ ]n[ ]
by OriginalRule from TRS P
isPalListKind[ ]n[ ] → tt[ ]n[ ]
by OriginalRule from TRS R
U821(tt)[ ]n[ ] → ISNEPAL[ ]n[ ]
by OriginalRule from TRS P
ISNEPAL[ ]n[ ] → U711(isQid)[ ]n[ ]
by OriginalRule from TRS P
isQid[ ]n[ ] → tt[ ]n[ ]
by OriginalRule from TRS R
U711(tt)[ ]n[ ] → U721(isPalListKind)[ ]n[ ]
by OriginalRule from TRS P
isPalListKind[ ]n[ ] → tt[ ]n[ ]
by OriginalRule from TRS R
(18) NO
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
ISNELIST → U411(isPalListKind)
U411(tt) → U421(isPalListKind)
U421(tt) → U431(isPalListKind)
U431(tt) → U441(isPalListKind)
U441(tt) → U451(isList)
U451(tt) → ISNELIST
ISNELIST → U511(isPalListKind)
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
ISNELIST → U411(isPalListKind)
U411(tt) → U421(isPalListKind)
U421(tt) → U431(isPalListKind)
U431(tt) → U441(isPalListKind)
U441(tt) → U451(isList)
U451(tt) → ISNELIST
ISNELIST → U511(isPalListKind)
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNELIST →
U411(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U411(tt) → U421(isPalListKind)
U421(tt) → U431(isPalListKind)
U431(tt) → U441(isPalListKind)
U441(tt) → U451(isList)
U451(tt) → ISNELIST
ISNELIST → U511(isPalListKind)
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(24) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt) →
U421(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U421(tt) → U431(isPalListKind)
U431(tt) → U441(isPalListKind)
U441(tt) → U451(isList)
U451(tt) → ISNELIST
ISNELIST → U511(isPalListKind)
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U421(
tt) →
U431(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U431(tt) → U441(isPalListKind)
U441(tt) → U451(isList)
U451(tt) → ISNELIST
ISNELIST → U511(isPalListKind)
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U431(
tt) →
U441(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U441(tt) → U451(isList)
U451(tt) → ISNELIST
ISNELIST → U511(isPalListKind)
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U441(
tt) →
U451(
isList) at position [0] we obtained the following new rules [LPAR04]:
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
ISNELIST → U511(isPalListKind)
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(32) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNELIST →
U511(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U511(tt) → U521(isPalListKind)
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(34) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt) →
U521(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(36) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U521(
tt) →
U531(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U531(tt) → U541(isPalListKind)
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(38) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U531(
tt) →
U541(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U541(tt) → U551(isNeList)
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U541(
tt) →
U551(
isNeList) at position [0] we obtained the following new rules [LPAR04]:
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
ISLIST → U111(isPalListKind)
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISLIST →
U111(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
U111(tt) → U121(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(44) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U111(
tt) →
U121(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U111(tt) → U121(tt)
U111(tt) → U121(U91(isPalListKind))
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
ISLIST → U211(isPalListKind)
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
U111(tt) → U121(tt)
U111(tt) → U121(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(46) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISLIST →
U211(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
ISLIST → U211(tt)
ISLIST → U211(U91(isPalListKind))
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
U211(tt) → U221(isPalListKind)
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
U111(tt) → U121(tt)
U111(tt) → U121(U91(isPalListKind))
ISLIST → U211(tt)
ISLIST → U211(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U211(
tt) →
U221(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U211(tt) → U221(tt)
U211(tt) → U221(U91(isPalListKind))
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
U221(tt) → U231(isPalListKind)
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
U111(tt) → U121(tt)
U111(tt) → U121(U91(isPalListKind))
ISLIST → U211(tt)
ISLIST → U211(U91(isPalListKind))
U211(tt) → U221(tt)
U211(tt) → U221(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(50) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U221(
tt) →
U231(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U221(tt) → U231(tt)
U221(tt) → U231(U91(isPalListKind))
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
U231(tt) → U241(isPalListKind)
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
U111(tt) → U121(tt)
U111(tt) → U121(U91(isPalListKind))
ISLIST → U211(tt)
ISLIST → U211(U91(isPalListKind))
U211(tt) → U221(tt)
U211(tt) → U221(U91(isPalListKind))
U221(tt) → U231(tt)
U221(tt) → U231(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(52) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U231(
tt) →
U241(
isPalListKind) at position [0] we obtained the following new rules [LPAR04]:
U231(tt) → U241(tt)
U231(tt) → U241(U91(isPalListKind))
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
U241(tt) → U251(isList)
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
U111(tt) → U121(tt)
U111(tt) → U121(U91(isPalListKind))
ISLIST → U211(tt)
ISLIST → U211(U91(isPalListKind))
U211(tt) → U221(tt)
U211(tt) → U221(U91(isPalListKind))
U221(tt) → U231(tt)
U221(tt) → U231(U91(isPalListKind))
U231(tt) → U241(tt)
U231(tt) → U241(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(54) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U241(
tt) →
U251(
isList) at position [0] we obtained the following new rules [LPAR04]:
U241(tt) → U251(U11(isPalListKind))
U241(tt) → U251(tt)
U241(tt) → U251(U21(isPalListKind))
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U551(tt) → ISLIST
U251(tt) → ISLIST
U241(tt) → ISLIST
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
U431(tt) → U441(tt)
U431(tt) → U441(U91(isPalListKind))
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(tt)
U441(tt) → U451(U21(isPalListKind))
ISNELIST → U511(tt)
ISNELIST → U511(U91(isPalListKind))
U511(tt) → U521(tt)
U511(tt) → U521(U91(isPalListKind))
U521(tt) → U531(tt)
U521(tt) → U531(U91(isPalListKind))
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISLIST → U111(tt)
ISLIST → U111(U91(isPalListKind))
U111(tt) → U121(tt)
U111(tt) → U121(U91(isPalListKind))
ISLIST → U211(tt)
ISLIST → U211(U91(isPalListKind))
U211(tt) → U221(tt)
U211(tt) → U221(U91(isPalListKind))
U221(tt) → U231(tt)
U221(tt) → U231(U91(isPalListKind))
U231(tt) → U241(tt)
U231(tt) → U241(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U241(tt) → U251(tt)
U241(tt) → U251(U21(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(56) NonTerminationLoopProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ISLIST evaluates to t =
ISLISTThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceISLIST →
U211(
tt)
with rule
ISLIST →
U211(
tt) at position [] and matcher [ ]
U211(tt) →
U221(
tt)
with rule
U211(
tt) →
U221(
tt) at position [] and matcher [ ]
U221(tt) →
U231(
tt)
with rule
U221(
tt) →
U231(
tt) at position [] and matcher [ ]
U231(tt) →
U241(
tt)
with rule
U231(
tt) →
U241(
tt) at position [] and matcher [ ]
U241(tt) →
ISLISTwith rule
U241(
tt) →
ISLISTNow applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(57) NO