(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = x1 + 2·x2
POL(U42(x1)) = 2·x1
POL(U51(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = 2·x1
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNatList(n__nil) → tt
length(nil) → 0
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1)) = 1 + x1
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = 2·x1 + 2·x2
POL(U42(x1)) = 2·x1
POL(U51(x1, x2)) = 2·x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
U11(tt) → tt
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(5) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1)) = x1
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = 1 + 2·x1 + x2
POL(U42(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = x1 + x2 + 2·x3
POL(U62(x1, x2)) = 2·x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(7) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1)) = x1
POL(U21(x1)) = x1
POL(U31(x1)) = 1 + x1
POL(U41(x1, x2)) = x1 + 2·x2
POL(U42(x1)) = 2·x1
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
U31(tt) → tt
(8) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(9) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1)) = 1 + x1
POL(U21(x1)) = x1
POL(U41(x1, x2)) = 2·x1 + 2·x2
POL(U42(x1)) = x1
POL(U51(x1, x2)) = 2·x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 2 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
(10) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(11) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZEROS → CONS(0, n__zeros)
ZEROS → 01
U411(tt, V2) → U421(isNatIList(activate(V2)))
U411(tt, V2) → ISNATILIST(activate(V2))
U411(tt, V2) → ACTIVATE(V2)
U511(tt, V2) → U521(isNatList(activate(V2)))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → ACTIVATE(V2)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
U621(tt, L) → S(length(activate(L)))
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__0) → 01
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__length(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__nil) → NIL
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 15 less nodes.
(14) Complex Obligation (AND)
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__length(X)) → LENGTH(activate(X))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U621(tt, L) → ACTIVATE(L)
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ISNAT(x1)) = x1
POL(ISNATLIST(x1)) = 2·x1
POL(LENGTH(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = 2·x1 + 2·x2
POL(U511(x1, x2)) = 2·x1 + 2·x2
POL(U52(x1)) = 2·x1
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U611(x1, x2, x3)) = 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = 2·x1 + 2·x2
POL(U621(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__length(X)) → LENGTH(activate(X))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U621(tt, L) → ACTIVATE(L)
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__length(X)) → ACTIVATE(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ISNAT(x1)) = 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(LENGTH(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + 2·x2
POL(U511(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + x1 + 2·x2 + 2·x3
POL(U611(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(U621(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = 2·x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U621(tt, L) → ACTIVATE(L)
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 11 less nodes.
(21) Complex Obligation (AND)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The graph contains the following edges 1 > 1
- ACTIVATE(n__s(X)) → ACTIVATE(X)
The graph contains the following edges 1 > 1
(26) YES
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ISNAT(x1) ) = max{0, 2x1 - 1}
POL( activate(x1) ) = 2x1
POL( n__zeros ) = 0
POL( zeros ) = 0
POL( n__0 ) = 2
POL( 0 ) = 2
POL( n__length(x1) ) = 0
POL( length(x1) ) = max{0, -2}
POL( n__s(x1) ) = 2x1 + 1
POL( s(x1) ) = 2x1 + 1
POL( n__cons(x1, x2) ) = 0
POL( cons(x1, x2) ) = max{0, -2}
POL( n__nil ) = 1
POL( nil ) = 2
POL( U61(x1, ..., x3) ) = max{0, 2x1 - 2}
POL( isNatList(x1) ) = 0
POL( U51(x1, x2) ) = max{0, -2}
POL( isNat(x1) ) = 2
POL( U21(x1) ) = max{0, 2x1 - 2}
POL( U62(x1, x2) ) = max{0, x1 - 1}
POL( tt ) = 2
POL( U52(x1) ) = max{0, 2x1 - 1}
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
s(X) → n__s(X)
length(X) → n__length(X)
cons(X1, X2) → n__cons(X1, X2)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
(29) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(31) YES
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
V2) →
ISNATLIST(
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
V1,
V2)) →
U511(
isNat(
activate(
V1)),
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__zeros) →
ISNATLIST(
zeros) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros)
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(39) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(41) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__zeros,
y1)) →
U511(
isNat(
zeros),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(45) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__0,
y1)) →
U511(
isNat(
0),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(47) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__0) →
ISNATLIST(
0) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__0) → ISNATLIST(n__0)
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__0) → ISNATLIST(n__0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(49) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__nil) →
ISNATLIST(
nil) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__nil) → ISNATLIST(n__nil)
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__nil) → ISNATLIST(n__nil)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(55) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__nil,
y1)) →
U511(
isNat(
nil),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(57) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(59) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__zeros) →
ISNATLIST(
cons(
0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(61) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__zeros,
y0)) →
U511(
isNat(
cons(
0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(63) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(65) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__zeros,
y0)) →
U511(
isNat(
cons(
n__0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(67) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(69) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__zeros) →
ISNATLIST(
cons(
n__0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(71) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATLIST(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U511(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(73) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATLIST(x1)) = x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + 2·x2
POL(U511(x1, x2)) = 2·x1 + 2·x2
POL(U52(x1)) = 2·x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(75) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATLIST(x1)) = x1
POL(U21(x1)) = 0
POL(U51(x1, x2)) = 1
POL(U511(x1, x2)) = x2
POL(U52(x1)) = 1
POL(U61(x1, x2, x3)) = 1
POL(U62(x1, x2)) = 1
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatList(x1)) = 1
POL(length(x1)) = 1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 1
POL(n__nil) = 0
POL(n__s(x1)) = 1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
s(X) → n__s(X)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
cons(X1, X2) → n__cons(X1, X2)
0 → n__0
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(77) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( U511(x1, x2) ) = 2x2 + 2
POL( ISNATLIST(x1) ) = x1 + 2
POL( cons(x1, x2) ) = 2x2
POL( s(x1) ) = 2
POL( U51(x1, x2) ) = 2
POL( U61(x1, ..., x3) ) = x2 + 2
POL( U62(x1, x2) ) = x2 + 2
POL( length(x1) ) = 2x1 + 2
POL( U21(x1) ) = max{0, x1 - 1}
POL( isNat(x1) ) = max{0, -2}
POL( U52(x1) ) = max{0, -2}
POL( isNatList(x1) ) = x1 + 2
POL( activate(x1) ) = x1
POL( n__zeros ) = 0
POL( zeros ) = 0
POL( n__0 ) = 0
POL( 0 ) = 0
POL( n__length(x1) ) = 2x1 + 2
POL( n__s(x1) ) = 2
POL( n__cons(x1, x2) ) = 2x2
POL( n__nil ) = 2
POL( nil ) = 2
POL( tt ) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
0 → n__0
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(79) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(U511(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(n__cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(ISNATLIST(x1)) = | 0 | + | | · | x1 |
POL(cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(activate(x1)) = | | + | | · | x1 |
POL(n__length(x1)) = | | + | | · | x1 |
POL(U61(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(isNatList(x1)) = | | + | | · | x1 |
POL(U51(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U62(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
cons(X1, X2) → n__cons(X1, X2)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
0 → n__0
s(X) → n__s(X)
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(81) NonTerminationLoopProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U511(
isNat(
n__0),
activate(
n__zeros)) evaluates to t =
U511(
isNat(
n__0),
activate(
n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU511(isNat(n__0), activate(n__zeros)) →
U511(
isNat(
n__0),
n__zeros)
with rule
activate(
X) →
X at position [1] and matcher [
X /
n__zeros]
U511(isNat(n__0), n__zeros) →
U511(
tt,
n__zeros)
with rule
isNat(
n__0) →
tt at position [0] and matcher [ ]
U511(tt, n__zeros) →
ISNATLIST(
n__cons(
n__0,
n__zeros))
with rule
U511(
tt,
n__zeros) →
ISNATLIST(
n__cons(
n__0,
n__zeros)) at position [] and matcher [ ]
ISNATLIST(n__cons(n__0, n__zeros)) →
U511(
isNat(
n__0),
activate(
n__zeros))
with rule
ISNATLIST(
n__cons(
x0,
y1)) →
U511(
isNat(
x0),
activate(
y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(82) NO
(83) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(84) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
U621(tt, L) → LENGTH(activate(L))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(
x1,
x2,
x3) =
x1
tt =
tt
U621(
x1,
x2) =
U621
isNat(
x1) =
isNat
activate(
x1) =
activate
LENGTH(
x1) =
LENGTH
cons(
x1,
x2) =
cons
isNatList(
x1) =
isNatList
n__zeros =
n__zeros
zeros =
zeros
n__0 =
n__0
0 =
0
n__length(
x1) =
n__length
length(
x1) =
length
n__s(
x1) =
n__s
s(
x1) =
s
n__cons(
x1,
x2) =
n__cons
n__nil =
n__nil
nil =
nil
U21(
x1) =
U21
U51(
x1,
x2) =
U51
U61(
x1,
x2,
x3) =
U61(
x1)
U52(
x1) =
x1
U62(
x1,
x2) =
x1
Recursive path order with status [RPO].
Quasi-Precedence:
[activate, length] > zeros > nzeros > [cons, ncons]
[activate, length] > zeros > 0 > [cons, ncons]
[activate, length] > nlength > [cons, ncons]
[activate, length] > nil > [cons, ncons]
[activate, length] > U611 > [isNat, U21] > [tt, U62^1] > [LENGTH, isNatList, U51] > [cons, ncons]
[activate, length] > U611 > [isNat, U21] > [tt, U62^1] > [ns, s] > [cons, ncons]
n0 > 0 > [cons, ncons]
nnil > nil > [cons, ncons]
Status:
tt: multiset
U62^1: multiset
isNat: multiset
activate: []
LENGTH: multiset
cons: []
isNatList: multiset
nzeros: multiset
zeros: multiset
n0: multiset
0: multiset
nlength: multiset
length: []
ns: multiset
s: multiset
ncons: []
nnil: multiset
nil: multiset
U21: multiset
U51: multiset
U611: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
s(X) → n__s(X)
length(X) → n__length(X)
cons(X1, X2) → n__cons(X1, X2)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(86) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(87) TRUE
(88) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(89) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATILIST(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = x1 + 2·x2
POL(U51(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = 2·x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(90) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(91) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
V2) →
ISNATILIST(
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
(92) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(93) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
V1,
V2)) →
U411(
isNat(
activate(
V1)),
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
(94) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(95) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__zeros) →
ISNATILIST(
zeros) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__zeros)
(96) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__zeros)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(97) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(98) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(99) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__zeros,
y1)) →
U411(
isNat(
zeros),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
(100) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(101) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(102) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(103) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__0,
y1)) →
U411(
isNat(
0),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
(104) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(105) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__0) →
ISNATILIST(
0) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__0) → ISNATILIST(n__0)
(106) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__0) → ISNATILIST(n__0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(107) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(108) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(109) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__nil) →
ISNATILIST(
nil) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__nil) → ISNATILIST(n__nil)
(110) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__nil) → ISNATILIST(n__nil)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(111) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(112) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(113) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__nil,
y1)) →
U411(
isNat(
nil),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
(114) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(115) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(116) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(117) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__zeros) →
ISNATILIST(
cons(
0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
(118) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(119) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__zeros,
y0)) →
U411(
isNat(
cons(
0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
(120) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(121) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(122) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(123) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__zeros,
y0)) →
U411(
isNat(
cons(
n__0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
(124) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(125) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(126) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(127) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__zeros) →
ISNATILIST(
cons(
n__0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
(128) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(129) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATILIST(x1)) = x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = 2·x1 + 2·x2
POL(U51(x1, x2)) = 2·x1 + 2·x2
POL(U52(x1)) = 2·x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(130) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(131) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATILIST(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = x1 + 2·x2
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(132) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(133) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATILIST(x1)) = x1
POL(U21(x1)) = 0
POL(U411(x1, x2)) = x2
POL(U51(x1, x2)) = 1
POL(U52(x1)) = 1
POL(U61(x1, x2, x3)) = 1
POL(U62(x1, x2)) = 1
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatList(x1)) = 1
POL(length(x1)) = 1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 1
POL(n__nil) = 0
POL(n__s(x1)) = 1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
s(X) → n__s(X)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
cons(X1, X2) → n__cons(X1, X2)
0 → n__0
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(134) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(135) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( U411(x1, x2) ) = max{0, 2x1 + 2x2 - 2}
POL( ISNATILIST(x1) ) = x1
POL( cons(x1, x2) ) = 2x1 + 2x2
POL( s(x1) ) = 2
POL( U51(x1, x2) ) = max{0, -2}
POL( U61(x1, ..., x3) ) = 2
POL( U62(x1, x2) ) = 2
POL( length(x1) ) = 2
POL( U21(x1) ) = 1
POL( isNat(x1) ) = x1 + 1
POL( U52(x1) ) = 2x1
POL( isNatList(x1) ) = max{0, -1}
POL( activate(x1) ) = x1
POL( n__zeros ) = 0
POL( zeros ) = 0
POL( n__0 ) = 0
POL( 0 ) = 0
POL( n__length(x1) ) = 2
POL( n__s(x1) ) = 2
POL( n__cons(x1, x2) ) = 2x1 + 2x2
POL( n__nil ) = 0
POL( nil ) = 0
POL( tt ) = 1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
0 → n__0
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(136) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(137) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(U411(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(n__cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(ISNATILIST(x1)) = | 0 | + | | · | x1 |
POL(cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(activate(x1)) = | | + | | · | x1 |
POL(n__length(x1)) = | | + | | · | x1 |
POL(U61(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(isNatList(x1)) = | | + | | · | x1 |
POL(U51(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U62(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
cons(X1, X2) → n__cons(X1, X2)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
0 → n__0
s(X) → n__s(X)
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(138) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(139) NonTerminationLoopProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U411(
isNat(
n__0),
activate(
n__zeros)) evaluates to t =
U411(
isNat(
n__0),
activate(
n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU411(isNat(n__0), activate(n__zeros)) →
U411(
isNat(
n__0),
n__zeros)
with rule
activate(
X) →
X at position [1] and matcher [
X /
n__zeros]
U411(isNat(n__0), n__zeros) →
U411(
tt,
n__zeros)
with rule
isNat(
n__0) →
tt at position [0] and matcher [ ]
U411(tt, n__zeros) →
ISNATILIST(
n__cons(
n__0,
n__zeros))
with rule
U411(
tt,
n__zeros) →
ISNATILIST(
n__cons(
n__0,
n__zeros)) at position [] and matcher [ ]
ISNATILIST(n__cons(n__0, n__zeros)) →
U411(
isNat(
n__0),
activate(
n__zeros))
with rule
ISNATILIST(
n__cons(
x0,
y1)) →
U411(
isNat(
x0),
activate(
y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(140) NO