Problem: U101(tt()) -> fst(splitAt(N,XS)) U11(tt()) -> snd(splitAt(N,XS)) U21(tt()) -> X U31(tt()) -> N U41(tt()) -> cons(N) U51(tt()) -> head(afterNth(N,XS)) U61(tt()) -> Y U71(tt()) -> pair(nil(),XS) U81(tt()) -> U82(splitAt(N,XS)) U82(pair(YS,ZS)) -> pair(cons(X),ZS) U91(tt()) -> XS and(tt()) -> X afterNth(N,XS) -> U11(and(isNatural())) fst(pair(X,Y)) -> U21(and(isLNat())) head(cons(N)) -> U31(and(isNatural())) isLNat() -> tt() isLNat() -> and(isNatural()) isLNat() -> isPLNat() isLNat() -> isNatural() isLNat() -> isLNat() isNatural() -> tt() isNatural() -> isLNat() isNatural() -> isNatural() isNatural() -> and(isNatural()) isPLNat() -> and(isLNat()) isPLNat() -> and(isNatural()) natsFrom(N) -> U41(isNatural()) sel(N,XS) -> U51(and(isNatural())) snd(pair(X,Y)) -> U61(and(isLNat())) splitAt(0(),XS) -> U71(isLNat()) splitAt(s(N),cons(X)) -> U81(and(isNatural())) tail(cons(N)) -> U91(and(isNatural())) take(N,XS) -> U101(and(isNatural())) Proof: Fresh Variable Processor: loop length: 1 terms: U101(tt()) context: fst(splitAt([],XS)) substitution: N -> U101(tt()) Qed