let R be the TRS under consideration sieve(cons(_1,_2)) -> sieve(activate(_2)) is in elim_R(R) let r0 be the right-hand side of this rule p0 = 0 is a position in r0 we have r0|p0 = activate(_2) activate(n__from(_3)) -> from(_3) is in R let l'0 be the left-hand side of this rule theta0 = {_2/n__from(_3)} is a mgu of r0|p0 and l'0 ==> sieve(cons(_1,n__from(_2))) -> sieve(from(_2)) is in EU_R^1 let r1 be the right-hand side of this rule p1 = 0 is a position in r1 we have r1|p1 = from(_2) from(_3) -> cons(_3,n__from(s(_3))) is in R let l'1 be the left-hand side of this rule theta1 = {_2/_3} is a mgu of r1|p1 and l'1 ==> sieve(cons(_1,n__from(_2))) -> sieve(cons(_2,n__from(s(_2)))) is in EU_R^2 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {} let theta' = {_1/_2, _2/s(_2)} we have r|p = sieve(cons(_2,n__from(s(_2)))) and theta'(theta(l)) = theta(r|p) so, theta(l) = sieve(cons(_1,n__from(_2))) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=2, depth k=4 599 rule(s) generated