let R be the TRS under consideration incr(cons(_1,_2)) -> activate(_2) is in elim_R(R) let r0 be the right-hand side of this rule p0 = epsilon is a position in r0 we have r0|p0 = activate(_2) activate(n__adx(_3)) -> adx(_3) is in R let l'0 be the left-hand side of this rule theta0 = {_2/n__adx(_3)} is a mgu of r0|p0 and l'0 ==> incr(cons(_1,n__adx(_2))) -> adx(_2) is in EU_R^1 let r1 be the right-hand side of this rule p1 = epsilon is a position in r1 we have r1|p1 = adx(_2) adx(cons(_3,_4)) -> incr(cons(activate(_3),n__adx(activate(_4)))) is in R let l'1 be the left-hand side of this rule theta1 = {_2/cons(_3,_4)} is a mgu of r1|p1 and l'1 ==> incr(cons(_1,n__adx(cons(_2,_3)))) -> incr(cons(activate(_2),n__adx(activate(_3)))) is in EU_R^2 let r2 be the right-hand side of this rule p2 = 0.1.0 is a position in r2 we have r2|p2 = activate(_3) activate(n__zeros) -> zeros is in R let l'2 be the left-hand side of this rule theta2 = {_3/n__zeros} is a mgu of r2|p2 and l'2 ==> incr(cons(_1,n__adx(cons(_2,n__zeros)))) -> incr(cons(activate(_2),n__adx(zeros))) is in EU_R^3 let r3 be the right-hand side of this rule p3 = 0.1.0 is a position in r3 we have r3|p3 = zeros zeros -> cons(n__0,n__zeros) is in R let l'3 be the left-hand side of this rule theta3 = {} is a mgu of r3|p3 and l'3 ==> incr(cons(_1,n__adx(cons(_2,n__zeros)))) -> incr(cons(activate(_2),n__adx(cons(n__0,n__zeros)))) is in EU_R^4 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {_1/activate(n__0), _2/n__0} let theta' = {} we have r|p = incr(cons(activate(_2),n__adx(cons(n__0,n__zeros)))) and theta'(theta(l)) = theta(r|p) so, theta(l) = incr(cons(activate(n__0),n__adx(cons(n__0,n__zeros)))) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=4, depth k=4 2246 rule(s) generated