0 QTRS
↳1 QTRSRRRProof (⇔)
↳2 QTRS
↳3 QTRSRRRProof (⇔)
↳4 QTRS
↳5 QTRSRRRProof (⇔)
↳6 QTRS
↳7 DependencyPairsProof (⇔)
↳8 QDP
↳9 DependencyGraphProof (⇔)
↳10 QDP
↳11 MRRProof (⇔)
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 QDPOrderProof (⇔)
↳16 QDP
↳17 Instantiation (⇔)
↳18 QDP
↳19 NonTerminationProof (⇔)
↳20 NO
nats → adx(zeros)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
hd(cons(X, Y)) → activate(X)
tl(cons(X, Y)) → activate(Y)
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(hd(x1)) = 2·x1
POL(incr(x1)) = x1
POL(n__0) = 0
POL(n__adx(x1)) = 2·x1
POL(n__incr(x1)) = x1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nats) = 0
POL(s(x1)) = x1
POL(tl(x1)) = 1 + 2·x1
POL(zeros) = 0
tl(cons(X, Y)) → activate(Y)
nats → adx(zeros)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
hd(cons(X, Y)) → activate(X)
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(hd(x1)) = 2 + 2·x1
POL(incr(x1)) = x1
POL(n__0) = 0
POL(n__adx(x1)) = 2·x1
POL(n__incr(x1)) = x1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nats) = 0
POL(s(x1)) = x1
POL(zeros) = 0
hd(cons(X, Y)) → activate(X)
nats → adx(zeros)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(incr(x1)) = x1
POL(n__0) = 0
POL(n__adx(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nats) = 2
POL(s(x1)) = x1
POL(zeros) = 0
nats → adx(zeros)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
INCR(cons(X, Y)) → ACTIVATE(X)
INCR(cons(X, Y)) → ACTIVATE(Y)
ADX(cons(X, Y)) → INCR(cons(activate(X), n__adx(activate(Y))))
ADX(cons(X, Y)) → ACTIVATE(X)
ADX(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__0) → 01
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__adx(X)) → ADX(X)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, Y)) → INCR(cons(activate(X), n__adx(activate(Y))))
INCR(cons(X, Y)) → ACTIVATE(Y)
ADX(cons(X, Y)) → ACTIVATE(X)
ADX(cons(X, Y)) → ACTIVATE(Y)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
ADX(cons(X, Y)) → ACTIVATE(X)
ADX(cons(X, Y)) → ACTIVATE(Y)
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(ADX(x1)) = 2 + 2·x1
POL(INCR(x1)) = 2·x1
POL(activate(x1)) = x1
POL(adx(x1)) = 1 + x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(n__0) = 0
POL(n__adx(x1)) = 1 + x1
POL(n__incr(x1)) = x1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(s(x1)) = x1
POL(zeros) = 0
ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, Y)) → INCR(cons(activate(X), n__adx(activate(Y))))
INCR(cons(X, Y)) → ACTIVATE(Y)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
INCR(cons(X, Y)) → ACTIVATE(X)
POL(ACTIVATE(x1)) = -I + 0A · x1
POL(n__incr(x1)) = -I + 0A · x1
POL(INCR(x1)) = -I + 0A · x1
POL(cons(x1, x2)) = -I + 1A · x1 + 0A · x2
POL(n__adx(x1)) = -I + 0A · x1
POL(ADX(x1)) = -I + 0A · x1
POL(activate(x1)) = -I + 0A · x1
POL(n__0) = 0A
POL(0) = 0A
POL(n__zeros) = 1A
POL(zeros) = 1A
POL(n__s(x1)) = -I + 0A · x1
POL(s(x1)) = -I + 0A · x1
POL(incr(x1)) = -I + 0A · x1
POL(adx(x1)) = -I + 0A · x1
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
incr(X) → n__incr(X)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(X) → n__adx(X)
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
zeros → cons(n__0, n__zeros)
zeros → n__zeros
0 → n__0
s(X) → n__s(X)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, Y)) → INCR(cons(activate(X), n__adx(activate(Y))))
INCR(cons(X, Y)) → ACTIVATE(Y)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__incr(X)) → INCR(X)
POL( INCR(x1) ) = x1 + 1
POL( cons(x1, x2) ) = 2x2
POL( n__adx(x1) ) = max{0, -2}
POL( activate(x1) ) = 1
POL( n__0 ) = 1
POL( 0 ) = 2
POL( n__zeros ) = 0
POL( zeros ) = 2
POL( n__s(x1) ) = x1 + 2
POL( s(x1) ) = max{0, 2x1 - 2}
POL( n__incr(x1) ) = 2x1 + 2
POL( incr(x1) ) = max{0, x1 - 2}
POL( adx(x1) ) = x1 + 2
POL( ACTIVATE(x1) ) = 2x1 + 1
POL( ADX(x1) ) = 1
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, Y)) → INCR(cons(activate(X), n__adx(activate(Y))))
INCR(cons(X, Y)) → ACTIVATE(Y)
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X
INCR(cons(y_1, n__adx(y_3))) → ACTIVATE(n__adx(y_3))
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, Y)) → INCR(cons(activate(X), n__adx(activate(Y))))
INCR(cons(y_1, n__adx(y_3))) → ACTIVATE(n__adx(y_3))
zeros → cons(n__0, n__zeros)
incr(cons(X, Y)) → cons(n__s(activate(X)), n__incr(activate(Y)))
adx(cons(X, Y)) → incr(cons(activate(X), n__adx(activate(Y))))
0 → n__0
zeros → n__zeros
s(X) → n__s(X)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
activate(n__0) → 0
activate(n__zeros) → zeros
activate(n__s(X)) → s(X)
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(X) → X