Problem:
 incr(nil()) -> nil()
 incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
 adx(nil()) -> nil()
 adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
 nats() -> adx(zeros())
 zeros() -> cons(0(),n__zeros())
 head(cons(X,L)) -> X
 tail(cons(X,L)) -> activate(L)
 incr(X) -> n__incr(X)
 adx(X) -> n__adx(X)
 zeros() -> n__zeros()
 activate(n__incr(X)) -> incr(X)
 activate(n__adx(X)) -> adx(X)
 activate(n__zeros()) -> zeros()
 activate(X) -> X

Proof:
 Matrix Interpretation Processor: dim=1
  
  interpretation:
   [tail](x0) = 4x0 + 3,
   
   [head](x0) = x0 + 1,
   
   [n__zeros] = 0,
   
   [0] = 0,
   
   [zeros] = 0,
   
   [nats] = 0,
   
   [n__adx](x0) = x0,
   
   [adx](x0) = x0,
   
   [n__incr](x0) = x0,
   
   [activate](x0) = x0,
   
   [s](x0) = x0,
   
   [cons](x0, x1) = 2x0 + 4x1,
   
   [incr](x0) = x0,
   
   [nil] = 4
  orientation:
   incr(nil()) = 4 >= 4 = nil()
   
   incr(cons(X,L)) = 4L + 2X >= 4L + 2X = cons(s(X),n__incr(activate(L)))
   
   adx(nil()) = 4 >= 4 = nil()
   
   adx(cons(X,L)) = 4L + 2X >= 4L + 2X = incr(cons(X,n__adx(activate(L))))
   
   nats() = 0 >= 0 = adx(zeros())
   
   zeros() = 0 >= 0 = cons(0(),n__zeros())
   
   head(cons(X,L)) = 4L + 2X + 1 >= X = X
   
   tail(cons(X,L)) = 16L + 8X + 3 >= L = activate(L)
   
   incr(X) = X >= X = n__incr(X)
   
   adx(X) = X >= X = n__adx(X)
   
   zeros() = 0 >= 0 = n__zeros()
   
   activate(n__incr(X)) = X >= X = incr(X)
   
   activate(n__adx(X)) = X >= X = adx(X)
   
   activate(n__zeros()) = 0 >= 0 = zeros()
   
   activate(X) = X >= X = X
  problem:
   incr(nil()) -> nil()
   incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
   adx(nil()) -> nil()
   adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
   nats() -> adx(zeros())
   zeros() -> cons(0(),n__zeros())
   incr(X) -> n__incr(X)
   adx(X) -> n__adx(X)
   zeros() -> n__zeros()
   activate(n__incr(X)) -> incr(X)
   activate(n__adx(X)) -> adx(X)
   activate(n__zeros()) -> zeros()
   activate(X) -> X
  Matrix Interpretation Processor: dim=3
   
   interpretation:
                 [0]
    [n__zeros] = [0]
                 [0],
    
          [0]
    [0] = [0]
          [0],
    
              [0]
    [zeros] = [0]
              [0],
    
             [1]
    [nats] = [1]
             [0],
    
                   [1 0 0]  
    [n__adx](x0) = [0 1 1]x0
                   [0 1 1]  ,
    
                [1 0 0]  
    [adx](x0) = [0 1 1]x0
                [0 1 1]  ,
    
                    [1 0 0]  
    [n__incr](x0) = [0 0 0]x0
                    [0 1 1]  ,
    
                          [0]
    [activate](x0) = x0 + [1]
                          [0],
    
              [1 0 0]  
    [s](x0) = [0 0 1]x0
              [0 1 0]  ,
    
                     [1 0 0]     [1 0 0]  
    [cons](x0, x1) = [0 0 0]x0 + [0 0 0]x1
                     [0 1 1]     [0 0 0]  ,
    
                 [1 0 0]  
    [incr](x0) = [0 0 0]x0
                 [0 1 1]  ,
    
            [1]
    [nil] = [0]
            [1]
   orientation:
                  [1]    [1]        
    incr(nil()) = [0] >= [0] = nil()
                  [1]    [1]        
    
                      [1 0 0]    [1 0 0]     [1 0 0]    [1 0 0]                                   
    incr(cons(X,L)) = [0 0 0]L + [0 0 0]X >= [0 0 0]L + [0 0 0]X = cons(s(X),n__incr(activate(L)))
                      [0 0 0]    [0 1 1]     [0 0 0]    [0 1 1]                                   
    
                 [1]    [1]        
    adx(nil()) = [1] >= [0] = nil()
                 [1]    [1]        
    
                     [1 0 0]    [1 0 0]     [1 0 0]    [1 0 0]                                     
    adx(cons(X,L)) = [0 0 0]L + [0 1 1]X >= [0 0 0]L + [0 0 0]X = incr(cons(X,n__adx(activate(L))))
                     [0 0 0]    [0 1 1]     [0 0 0]    [0 1 1]                                     
    
             [1]    [0]               
    nats() = [1] >= [0] = adx(zeros())
             [0]    [0]               
    
              [0]    [0]                       
    zeros() = [0] >= [0] = cons(0(),n__zeros())
              [0]    [0]                       
    
              [1 0 0]     [1 0 0]              
    incr(X) = [0 0 0]X >= [0 0 0]X = n__incr(X)
              [0 1 1]     [0 1 1]              
    
             [1 0 0]     [1 0 0]             
    adx(X) = [0 1 1]X >= [0 1 1]X = n__adx(X)
             [0 1 1]     [0 1 1]             
    
              [0]    [0]             
    zeros() = [0] >= [0] = n__zeros()
              [0]    [0]             
    
                           [1 0 0]    [0]    [1 0 0]           
    activate(n__incr(X)) = [0 0 0]X + [1] >= [0 0 0]X = incr(X)
                           [0 1 1]    [0]    [0 1 1]           
    
                          [1 0 0]    [0]    [1 0 0]          
    activate(n__adx(X)) = [0 1 1]X + [1] >= [0 1 1]X = adx(X)
                          [0 1 1]    [0]    [0 1 1]          
    
                           [0]    [0]          
    activate(n__zeros()) = [1] >= [0] = zeros()
                           [0]    [0]          
    
                      [0]         
    activate(X) = X + [1] >= X = X
                      [0]         
   problem:
    incr(nil()) -> nil()
    incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
    adx(nil()) -> nil()
    adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
    zeros() -> cons(0(),n__zeros())
    incr(X) -> n__incr(X)
    adx(X) -> n__adx(X)
    zeros() -> n__zeros()
    activate(n__incr(X)) -> incr(X)
    activate(n__adx(X)) -> adx(X)
    activate(n__zeros()) -> zeros()
    activate(X) -> X
   Matrix Interpretation Processor: dim=1
    
    interpretation:
     [n__zeros] = 0,
     
     [0] = 0,
     
     [zeros] = 0,
     
     [n__adx](x0) = 4x0 + 1,
     
     [adx](x0) = 4x0 + 1,
     
     [n__incr](x0) = x0,
     
     [activate](x0) = x0,
     
     [s](x0) = x0,
     
     [cons](x0, x1) = 4x0 + x1,
     
     [incr](x0) = x0,
     
     [nil] = 0
    orientation:
     incr(nil()) = 0 >= 0 = nil()
     
     incr(cons(X,L)) = L + 4X >= L + 4X = cons(s(X),n__incr(activate(L)))
     
     adx(nil()) = 1 >= 0 = nil()
     
     adx(cons(X,L)) = 4L + 16X + 1 >= 4L + 4X + 1 = incr(cons(X,n__adx(activate(L))))
     
     zeros() = 0 >= 0 = cons(0(),n__zeros())
     
     incr(X) = X >= X = n__incr(X)
     
     adx(X) = 4X + 1 >= 4X + 1 = n__adx(X)
     
     zeros() = 0 >= 0 = n__zeros()
     
     activate(n__incr(X)) = X >= X = incr(X)
     
     activate(n__adx(X)) = 4X + 1 >= 4X + 1 = adx(X)
     
     activate(n__zeros()) = 0 >= 0 = zeros()
     
     activate(X) = X >= X = X
    problem:
     incr(nil()) -> nil()
     incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
     adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
     zeros() -> cons(0(),n__zeros())
     incr(X) -> n__incr(X)
     adx(X) -> n__adx(X)
     zeros() -> n__zeros()
     activate(n__incr(X)) -> incr(X)
     activate(n__adx(X)) -> adx(X)
     activate(n__zeros()) -> zeros()
     activate(X) -> X
    Matrix Interpretation Processor: dim=3
     
     interpretation:
                   [0]
      [n__zeros] = [0]
                   [0],
      
            [0]
      [0] = [0]
            [0],
      
                [0]
      [zeros] = [0]
                [0],
      
                     [1 0 0]     [1]
      [n__adx](x0) = [0 0 0]x0 + [0]
                     [0 0 0]     [0],
      
                  [1 0 0]     [1]
      [adx](x0) = [0 0 0]x0 + [0]
                  [0 0 0]     [0],
      
                      [1 0 1]  
      [n__incr](x0) = [0 0 1]x0
                      [0 0 0]  ,
      
                       [1 0 0]  
      [activate](x0) = [0 1 0]x0
                       [0 1 1]  ,
      
                [1 0 0]  
      [s](x0) = [0 1 0]x0
                [0 0 0]  ,
      
                       [1 1 0]     [1 0 0]  
      [cons](x0, x1) = [0 0 0]x0 + [0 0 0]x1
                       [0 0 0]     [0 1 1]  ,
      
                   [1 0 1]  
      [incr](x0) = [0 0 1]x0
                   [0 0 1]  ,
      
              [0]
      [nil] = [0]
              [1]
     orientation:
                    [1]    [0]        
      incr(nil()) = [1] >= [0] = nil()
                    [1]    [1]        
      
                        [1 1 1]    [1 1 0]     [1 1 1]    [1 1 0]                                   
      incr(cons(X,L)) = [0 1 1]L + [0 0 0]X >= [0 0 0]L + [0 0 0]X = cons(s(X),n__incr(activate(L)))
                        [0 1 1]    [0 0 0]     [0 1 1]    [0 0 0]                                   
      
                       [1 0 0]    [1 1 0]    [1]    [1 0 0]    [1 1 0]    [1]                                    
      adx(cons(X,L)) = [0 0 0]L + [0 0 0]X + [0] >= [0 0 0]L + [0 0 0]X + [0] = incr(cons(X,n__adx(activate(L))))
                       [0 0 0]    [0 0 0]    [0]    [0 0 0]    [0 0 0]    [0]                                    
      
                [0]    [0]                       
      zeros() = [0] >= [0] = cons(0(),n__zeros())
                [0]    [0]                       
      
                [1 0 1]     [1 0 1]              
      incr(X) = [0 0 1]X >= [0 0 1]X = n__incr(X)
                [0 0 1]     [0 0 0]              
      
               [1 0 0]    [1]    [1 0 0]    [1]            
      adx(X) = [0 0 0]X + [0] >= [0 0 0]X + [0] = n__adx(X)
               [0 0 0]    [0]    [0 0 0]    [0]            
      
                [0]    [0]             
      zeros() = [0] >= [0] = n__zeros()
                [0]    [0]             
      
                             [1 0 1]     [1 0 1]           
      activate(n__incr(X)) = [0 0 1]X >= [0 0 1]X = incr(X)
                             [0 0 1]     [0 0 1]           
      
                            [1 0 0]    [1]    [1 0 0]    [1]         
      activate(n__adx(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = adx(X)
                            [0 0 0]    [0]    [0 0 0]    [0]         
      
                             [0]    [0]          
      activate(n__zeros()) = [0] >= [0] = zeros()
                             [0]    [0]          
      
                    [1 0 0]          
      activate(X) = [0 1 0]X >= X = X
                    [0 1 1]          
     problem:
      incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
      adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
      zeros() -> cons(0(),n__zeros())
      incr(X) -> n__incr(X)
      adx(X) -> n__adx(X)
      zeros() -> n__zeros()
      activate(n__incr(X)) -> incr(X)
      activate(n__adx(X)) -> adx(X)
      activate(n__zeros()) -> zeros()
      activate(X) -> X
     Matrix Interpretation Processor: dim=3
      
      interpretation:
                    [0]
       [n__zeros] = [1]
                    [0],
       
             [0]
       [0] = [0]
             [1],
       
                 [1]
       [zeros] = [1]
                 [0],
       
                      [1 0 0]     [0]
       [n__adx](x0) = [0 0 0]x0 + [0]
                      [0 0 0]     [1],
       
                   [1 0 0]     [0]
       [adx](x0) = [0 0 0]x0 + [1]
                   [0 0 0]     [1],
       
                       [1 0 0]     [0]
       [n__incr](x0) = [0 0 0]x0 + [0]
                       [0 0 0]     [1],
       
                        [1 1 0]  
       [activate](x0) = [0 1 1]x0
                        [0 0 1]  ,
       
                 [1 0 0]     [0]
       [s](x0) = [0 0 0]x0 + [1]
                 [0 0 0]     [1],
       
                        [1 0 0]     [1 1 0]  
       [cons](x0, x1) = [0 0 1]x0 + [0 0 0]x1
                        [0 1 0]     [0 0 0]  ,
       
                    [1 0 0]     [0]
       [incr](x0) = [0 0 0]x0 + [1]
                    [0 0 0]     [1]
      orientation:
                         [1 1 0]    [1 0 0]    [0]    [1 1 0]    [1 0 0]    [0]                                  
       incr(cons(X,L)) = [0 0 0]L + [0 0 0]X + [1] >= [0 0 0]L + [0 0 0]X + [1] = cons(s(X),n__incr(activate(L)))
                         [0 0 0]    [0 0 0]    [1]    [0 0 0]    [0 0 0]    [1]                                  
       
                        [1 1 0]    [1 0 0]    [0]    [1 1 0]    [1 0 0]    [0]                                    
       adx(cons(X,L)) = [0 0 0]L + [0 0 0]X + [1] >= [0 0 0]L + [0 0 0]X + [1] = incr(cons(X,n__adx(activate(L))))
                        [0 0 0]    [0 0 0]    [1]    [0 0 0]    [0 0 0]    [1]                                    
       
                 [1]    [1]                       
       zeros() = [1] >= [1] = cons(0(),n__zeros())
                 [0]    [0]                       
       
                 [1 0 0]    [0]    [1 0 0]    [0]             
       incr(X) = [0 0 0]X + [1] >= [0 0 0]X + [0] = n__incr(X)
                 [0 0 0]    [1]    [0 0 0]    [1]             
       
                [1 0 0]    [0]    [1 0 0]    [0]            
       adx(X) = [0 0 0]X + [1] >= [0 0 0]X + [0] = n__adx(X)
                [0 0 0]    [1]    [0 0 0]    [1]            
       
                 [1]    [0]             
       zeros() = [1] >= [1] = n__zeros()
                 [0]    [0]             
       
                              [1 0 0]    [0]    [1 0 0]    [0]          
       activate(n__incr(X)) = [0 0 0]X + [1] >= [0 0 0]X + [1] = incr(X)
                              [0 0 0]    [1]    [0 0 0]    [1]          
       
                             [1 0 0]    [0]    [1 0 0]    [0]         
       activate(n__adx(X)) = [0 0 0]X + [1] >= [0 0 0]X + [1] = adx(X)
                             [0 0 0]    [1]    [0 0 0]    [1]         
       
                              [1]    [1]          
       activate(n__zeros()) = [1] >= [1] = zeros()
                              [0]    [0]          
       
                     [1 1 0]          
       activate(X) = [0 1 1]X >= X = X
                     [0 0 1]          
      problem:
       incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
       adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
       zeros() -> cons(0(),n__zeros())
       incr(X) -> n__incr(X)
       adx(X) -> n__adx(X)
       activate(n__incr(X)) -> incr(X)
       activate(n__adx(X)) -> adx(X)
       activate(n__zeros()) -> zeros()
       activate(X) -> X
      Unfolding Processor:
       loop length: 5
       terms:
        incr(cons(X,n__adx(cons(x3126,n__zeros()))))
        cons(s(X),n__incr(activate(n__adx(cons(x3126,n__zeros())))))
        cons(s(X),n__incr(adx(cons(x3126,n__zeros()))))
        cons(s(X),n__incr(incr(cons(x3126,n__adx(activate(n__zeros()))))))
        cons(s(X),n__incr(incr(cons(x3126,n__adx(zeros())))))
       context: cons(s(X),n__incr([]))
       substitution:
        X -> x3126
        x3126 -> 0()
       Qed