0 QTRS
↳1 QTRSRRRProof (⇔)
↳2 QTRS
↳3 QTRSRRRProof (⇔)
↳4 QTRS
↳5 DependencyPairsProof (⇔)
↳6 QDP
↳7 DependencyGraphProof (⇔)
↳8 QDP
↳9 MRRProof (⇔)
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 Instantiation (⇔)
↳14 QDP
↳15 NonTerminationProof (⇔)
↳16 NO
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
nats → adx(zeros)
zeros → cons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(head(x1)) = 1 + x1
POL(incr(x1)) = x1
POL(n__adx(x1)) = 2·x1
POL(n__incr(x1)) = x1
POL(n__zeros) = 0
POL(nats) = 1
POL(nil) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 2 + x1
POL(zeros) = 0
nats → adx(zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(incr(x1)) = x1
POL(n__adx(x1)) = 2·x1
POL(n__incr(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(zeros) = 0
adx(nil) → nil
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X
INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ADX(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__adx(X)) → ADX(X)
ACTIVATE(n__zeros) → ZEROS
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X
ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ADX(cons(X, L)) → ACTIVATE(L)
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X
ADX(cons(X, L)) → ACTIVATE(L)
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(ADX(x1)) = 2 + 2·x1
POL(INCR(x1)) = 2·x1
POL(activate(x1)) = x1
POL(adx(x1)) = 1 + x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(n__adx(x1)) = 1 + x1
POL(n__incr(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(zeros) = 0
ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__incr(X)) → INCR(X)
POL( INCR(x1) ) = x1 + 1
POL( cons(x1, x2) ) = 2x2 + 1
POL( n__adx(x1) ) = 0
POL( activate(x1) ) = 0
POL( n__incr(x1) ) = x1
POL( incr(x1) ) = max{0, 2x1 - 1}
POL( adx(x1) ) = 2x1 + 1
POL( n__zeros ) = 1
POL( zeros ) = 1
POL( s(x1) ) = x1 + 2
POL( nil ) = 2
POL( 0 ) = 2
POL( ACTIVATE(x1) ) = x1 + 2
POL( ADX(x1) ) = 2
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X
INCR(cons(y_0, n__adx(y_2))) → ACTIVATE(n__adx(y_2))
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
INCR(cons(y_0, n__adx(y_2))) → ACTIVATE(n__adx(y_2))
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X