Problem: incr(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),n__incr(activate(L))) adx(nil()) -> nil() adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L)))) nats() -> adx(zeros()) zeros() -> cons(0(),n__zeros()) head(cons(X,L)) -> X tail(cons(X,L)) -> activate(L) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros() -> n__zeros() activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros()) -> zeros() activate(X) -> X Proof: Matrix Interpretation Processor: dim=1 interpretation: [tail](x0) = 2x0 + 1, [head](x0) = 5x0 + 1, [n__zeros] = 0, [0] = 0, [zeros] = 0, [nats] = 0, [n__adx](x0) = x0, [adx](x0) = x0, [n__incr](x0) = x0, [activate](x0) = x0, [s](x0) = x0, [cons](x0, x1) = 4x0 + x1, [incr](x0) = x0, [nil] = 5 orientation: incr(nil()) = 5 >= 5 = nil() incr(cons(X,L)) = L + 4X >= L + 4X = cons(s(X),n__incr(activate(L))) adx(nil()) = 5 >= 5 = nil() adx(cons(X,L)) = L + 4X >= L + 4X = incr(cons(X,n__adx(activate(L)))) nats() = 0 >= 0 = adx(zeros()) zeros() = 0 >= 0 = cons(0(),n__zeros()) head(cons(X,L)) = 5L + 20X + 1 >= X = X tail(cons(X,L)) = 2L + 8X + 1 >= L = activate(L) incr(X) = X >= X = n__incr(X) adx(X) = X >= X = n__adx(X) zeros() = 0 >= 0 = n__zeros() activate(n__incr(X)) = X >= X = incr(activate(X)) activate(n__adx(X)) = X >= X = adx(activate(X)) activate(n__zeros()) = 0 >= 0 = zeros() activate(X) = X >= X = X problem: incr(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),n__incr(activate(L))) adx(nil()) -> nil() adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L)))) nats() -> adx(zeros()) zeros() -> cons(0(),n__zeros()) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros() -> n__zeros() activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros()) -> zeros() activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [n__zeros] = 0, [0] = 0, [zeros] = 0, [nats] = 1, [n__adx](x0) = 6x0 + 1, [adx](x0) = 6x0 + 1, [n__incr](x0) = x0, [activate](x0) = x0, [s](x0) = x0, [cons](x0, x1) = x0 + x1, [incr](x0) = x0, [nil] = 2 orientation: incr(nil()) = 2 >= 2 = nil() incr(cons(X,L)) = L + X >= L + X = cons(s(X),n__incr(activate(L))) adx(nil()) = 13 >= 2 = nil() adx(cons(X,L)) = 6L + 6X + 1 >= 6L + X + 1 = incr(cons(X,n__adx(activate(L)))) nats() = 1 >= 1 = adx(zeros()) zeros() = 0 >= 0 = cons(0(),n__zeros()) incr(X) = X >= X = n__incr(X) adx(X) = 6X + 1 >= 6X + 1 = n__adx(X) zeros() = 0 >= 0 = n__zeros() activate(n__incr(X)) = X >= X = incr(activate(X)) activate(n__adx(X)) = 6X + 1 >= 6X + 1 = adx(activate(X)) activate(n__zeros()) = 0 >= 0 = zeros() activate(X) = X >= X = X problem: incr(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),n__incr(activate(L))) adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L)))) nats() -> adx(zeros()) zeros() -> cons(0(),n__zeros()) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros() -> n__zeros() activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros()) -> zeros() activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [n__zeros] = 0, [0] = 0, [zeros] = 0, [nats] = 4, [n__adx](x0) = x0, [adx](x0) = x0, [n__incr](x0) = x0, [activate](x0) = x0, [s](x0) = x0, [cons](x0, x1) = 2x0 + x1, [incr](x0) = x0, [nil] = 0 orientation: incr(nil()) = 0 >= 0 = nil() incr(cons(X,L)) = L + 2X >= L + 2X = cons(s(X),n__incr(activate(L))) adx(cons(X,L)) = L + 2X >= L + 2X = incr(cons(X,n__adx(activate(L)))) nats() = 4 >= 0 = adx(zeros()) zeros() = 0 >= 0 = cons(0(),n__zeros()) incr(X) = X >= X = n__incr(X) adx(X) = X >= X = n__adx(X) zeros() = 0 >= 0 = n__zeros() activate(n__incr(X)) = X >= X = incr(activate(X)) activate(n__adx(X)) = X >= X = adx(activate(X)) activate(n__zeros()) = 0 >= 0 = zeros() activate(X) = X >= X = X problem: incr(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),n__incr(activate(L))) adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L)))) zeros() -> cons(0(),n__zeros()) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros() -> n__zeros() activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros()) -> zeros() activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [0] [n__zeros] = [0] [0], [0] [0] = [0] [0], [0] [zeros] = [0] [0], [1 0 0] [n__adx](x0) = [0 0 0]x0 [0 0 1] , [1 0 0] [adx](x0) = [0 0 0]x0 [0 0 1] , [1 1 0] [n__incr](x0) = [0 1 0]x0 [0 0 0] , [activate](x0) = x0 , [1 0 0] [s](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [cons](x0, x1) = [0 0 0]x0 + x1 [0 0 1] , [1 1 0] [incr](x0) = [0 1 0]x0 [0 0 0] , [0] [nil] = [1] [0] orientation: [1] [0] incr(nil()) = [1] >= [1] = nil() [0] [0] [1 1 0] [1 0 0] [1 1 0] [1 0 0] incr(cons(X,L)) = [0 1 0]L + [0 0 0]X >= [0 1 0]L + [0 0 0]X = cons(s(X),n__incr(activate(L))) [0 0 0] [0 0 0] [0 0 0] [0 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] adx(cons(X,L)) = [0 0 0]L + [0 0 0]X >= [0 0 0]L + [0 0 0]X = incr(cons(X,n__adx(activate(L)))) [0 0 1] [0 0 1] [0 0 0] [0 0 0] [0] [0] zeros() = [0] >= [0] = cons(0(),n__zeros()) [0] [0] [1 1 0] [1 1 0] incr(X) = [0 1 0]X >= [0 1 0]X = n__incr(X) [0 0 0] [0 0 0] [1 0 0] [1 0 0] adx(X) = [0 0 0]X >= [0 0 0]X = n__adx(X) [0 0 1] [0 0 1] [0] [0] zeros() = [0] >= [0] = n__zeros() [0] [0] [1 1 0] [1 1 0] activate(n__incr(X)) = [0 1 0]X >= [0 1 0]X = incr(activate(X)) [0 0 0] [0 0 0] [1 0 0] [1 0 0] activate(n__adx(X)) = [0 0 0]X >= [0 0 0]X = adx(activate(X)) [0 0 1] [0 0 1] [0] [0] activate(n__zeros()) = [0] >= [0] = zeros() [0] [0] activate(X) = X >= X = X problem: incr(cons(X,L)) -> cons(s(X),n__incr(activate(L))) adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L)))) zeros() -> cons(0(),n__zeros()) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros() -> n__zeros() activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros()) -> zeros() activate(X) -> X Unfolding Processor: loop length: 6 terms: incr(cons(X,n__adx(n__zeros()))) cons(s(X),n__incr(activate(n__adx(n__zeros())))) cons(s(X),n__incr(adx(activate(n__zeros())))) cons(s(X),n__incr(adx(zeros()))) cons(s(X),n__incr(adx(cons(0(),n__zeros())))) cons(s(X),n__incr(incr(cons(0(),n__adx(activate(n__zeros())))))) context: cons(s(X),n__incr([])) substitution: X -> 0() Qed