Problem:
incr(nil()) -> nil()
incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
adx(nil()) -> nil()
adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
nats() -> adx(zeros())
zeros() -> cons(0(),n__zeros())
head(cons(X,L)) -> X
tail(cons(X,L)) -> activate(L)
incr(X) -> n__incr(X)
adx(X) -> n__adx(X)
zeros() -> n__zeros()
activate(n__incr(X)) -> incr(activate(X))
activate(n__adx(X)) -> adx(activate(X))
activate(n__zeros()) -> zeros()
activate(X) -> X
Proof:
Matrix Interpretation Processor: dim=1
interpretation:
[tail](x0) = 2x0 + 1,
[head](x0) = 5x0 + 1,
[n__zeros] = 0,
[0] = 0,
[zeros] = 0,
[nats] = 0,
[n__adx](x0) = x0,
[adx](x0) = x0,
[n__incr](x0) = x0,
[activate](x0) = x0,
[s](x0) = x0,
[cons](x0, x1) = 4x0 + x1,
[incr](x0) = x0,
[nil] = 5
orientation:
incr(nil()) = 5 >= 5 = nil()
incr(cons(X,L)) = L + 4X >= L + 4X = cons(s(X),n__incr(activate(L)))
adx(nil()) = 5 >= 5 = nil()
adx(cons(X,L)) = L + 4X >= L + 4X = incr(cons(X,n__adx(activate(L))))
nats() = 0 >= 0 = adx(zeros())
zeros() = 0 >= 0 = cons(0(),n__zeros())
head(cons(X,L)) = 5L + 20X + 1 >= X = X
tail(cons(X,L)) = 2L + 8X + 1 >= L = activate(L)
incr(X) = X >= X = n__incr(X)
adx(X) = X >= X = n__adx(X)
zeros() = 0 >= 0 = n__zeros()
activate(n__incr(X)) = X >= X = incr(activate(X))
activate(n__adx(X)) = X >= X = adx(activate(X))
activate(n__zeros()) = 0 >= 0 = zeros()
activate(X) = X >= X = X
problem:
incr(nil()) -> nil()
incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
adx(nil()) -> nil()
adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
nats() -> adx(zeros())
zeros() -> cons(0(),n__zeros())
incr(X) -> n__incr(X)
adx(X) -> n__adx(X)
zeros() -> n__zeros()
activate(n__incr(X)) -> incr(activate(X))
activate(n__adx(X)) -> adx(activate(X))
activate(n__zeros()) -> zeros()
activate(X) -> X
Matrix Interpretation Processor: dim=1
interpretation:
[n__zeros] = 0,
[0] = 0,
[zeros] = 0,
[nats] = 1,
[n__adx](x0) = 6x0 + 1,
[adx](x0) = 6x0 + 1,
[n__incr](x0) = x0,
[activate](x0) = x0,
[s](x0) = x0,
[cons](x0, x1) = x0 + x1,
[incr](x0) = x0,
[nil] = 2
orientation:
incr(nil()) = 2 >= 2 = nil()
incr(cons(X,L)) = L + X >= L + X = cons(s(X),n__incr(activate(L)))
adx(nil()) = 13 >= 2 = nil()
adx(cons(X,L)) = 6L + 6X + 1 >= 6L + X + 1 = incr(cons(X,n__adx(activate(L))))
nats() = 1 >= 1 = adx(zeros())
zeros() = 0 >= 0 = cons(0(),n__zeros())
incr(X) = X >= X = n__incr(X)
adx(X) = 6X + 1 >= 6X + 1 = n__adx(X)
zeros() = 0 >= 0 = n__zeros()
activate(n__incr(X)) = X >= X = incr(activate(X))
activate(n__adx(X)) = 6X + 1 >= 6X + 1 = adx(activate(X))
activate(n__zeros()) = 0 >= 0 = zeros()
activate(X) = X >= X = X
problem:
incr(nil()) -> nil()
incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
nats() -> adx(zeros())
zeros() -> cons(0(),n__zeros())
incr(X) -> n__incr(X)
adx(X) -> n__adx(X)
zeros() -> n__zeros()
activate(n__incr(X)) -> incr(activate(X))
activate(n__adx(X)) -> adx(activate(X))
activate(n__zeros()) -> zeros()
activate(X) -> X
Matrix Interpretation Processor: dim=1
interpretation:
[n__zeros] = 0,
[0] = 0,
[zeros] = 0,
[nats] = 4,
[n__adx](x0) = x0,
[adx](x0) = x0,
[n__incr](x0) = x0,
[activate](x0) = x0,
[s](x0) = x0,
[cons](x0, x1) = 2x0 + x1,
[incr](x0) = x0,
[nil] = 0
orientation:
incr(nil()) = 0 >= 0 = nil()
incr(cons(X,L)) = L + 2X >= L + 2X = cons(s(X),n__incr(activate(L)))
adx(cons(X,L)) = L + 2X >= L + 2X = incr(cons(X,n__adx(activate(L))))
nats() = 4 >= 0 = adx(zeros())
zeros() = 0 >= 0 = cons(0(),n__zeros())
incr(X) = X >= X = n__incr(X)
adx(X) = X >= X = n__adx(X)
zeros() = 0 >= 0 = n__zeros()
activate(n__incr(X)) = X >= X = incr(activate(X))
activate(n__adx(X)) = X >= X = adx(activate(X))
activate(n__zeros()) = 0 >= 0 = zeros()
activate(X) = X >= X = X
problem:
incr(nil()) -> nil()
incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
zeros() -> cons(0(),n__zeros())
incr(X) -> n__incr(X)
adx(X) -> n__adx(X)
zeros() -> n__zeros()
activate(n__incr(X)) -> incr(activate(X))
activate(n__adx(X)) -> adx(activate(X))
activate(n__zeros()) -> zeros()
activate(X) -> X
Matrix Interpretation Processor: dim=3
interpretation:
[0]
[n__zeros] = [0]
[0],
[0]
[0] = [0]
[0],
[0]
[zeros] = [0]
[0],
[1 0 0]
[n__adx](x0) = [0 0 0]x0
[0 0 1] ,
[1 0 0]
[adx](x0) = [0 0 0]x0
[0 0 1] ,
[1 1 0]
[n__incr](x0) = [0 1 0]x0
[0 0 0] ,
[activate](x0) = x0
,
[1 0 0]
[s](x0) = [0 0 0]x0
[0 0 0] ,
[1 0 0]
[cons](x0, x1) = [0 0 0]x0 + x1
[0 0 1] ,
[1 1 0]
[incr](x0) = [0 1 0]x0
[0 0 0] ,
[0]
[nil] = [1]
[0]
orientation:
[1] [0]
incr(nil()) = [1] >= [1] = nil()
[0] [0]
[1 1 0] [1 0 0] [1 1 0] [1 0 0]
incr(cons(X,L)) = [0 1 0]L + [0 0 0]X >= [0 1 0]L + [0 0 0]X = cons(s(X),n__incr(activate(L)))
[0 0 0] [0 0 0] [0 0 0] [0 0 0]
[1 0 0] [1 0 0] [1 0 0] [1 0 0]
adx(cons(X,L)) = [0 0 0]L + [0 0 0]X >= [0 0 0]L + [0 0 0]X = incr(cons(X,n__adx(activate(L))))
[0 0 1] [0 0 1] [0 0 0] [0 0 0]
[0] [0]
zeros() = [0] >= [0] = cons(0(),n__zeros())
[0] [0]
[1 1 0] [1 1 0]
incr(X) = [0 1 0]X >= [0 1 0]X = n__incr(X)
[0 0 0] [0 0 0]
[1 0 0] [1 0 0]
adx(X) = [0 0 0]X >= [0 0 0]X = n__adx(X)
[0 0 1] [0 0 1]
[0] [0]
zeros() = [0] >= [0] = n__zeros()
[0] [0]
[1 1 0] [1 1 0]
activate(n__incr(X)) = [0 1 0]X >= [0 1 0]X = incr(activate(X))
[0 0 0] [0 0 0]
[1 0 0] [1 0 0]
activate(n__adx(X)) = [0 0 0]X >= [0 0 0]X = adx(activate(X))
[0 0 1] [0 0 1]
[0] [0]
activate(n__zeros()) = [0] >= [0] = zeros()
[0] [0]
activate(X) = X >= X = X
problem:
incr(cons(X,L)) -> cons(s(X),n__incr(activate(L)))
adx(cons(X,L)) -> incr(cons(X,n__adx(activate(L))))
zeros() -> cons(0(),n__zeros())
incr(X) -> n__incr(X)
adx(X) -> n__adx(X)
zeros() -> n__zeros()
activate(n__incr(X)) -> incr(activate(X))
activate(n__adx(X)) -> adx(activate(X))
activate(n__zeros()) -> zeros()
activate(X) -> X
Unfolding Processor:
loop length: 6
terms:
incr(cons(X,n__adx(n__zeros())))
cons(s(X),n__incr(activate(n__adx(n__zeros()))))
cons(s(X),n__incr(adx(activate(n__zeros()))))
cons(s(X),n__incr(adx(zeros())))
cons(s(X),n__incr(adx(cons(0(),n__zeros()))))
cons(s(X),n__incr(incr(cons(0(),n__adx(activate(n__zeros()))))))
context: cons(s(X),n__incr([]))
substitution:
X -> 0()
Qed