let R be the TRS under consideration incr(cons(_1,_2)) -> activate(_2) is in elim_R(R) let l0 be the left-hand side of this rule p0 = epsilon is a position in l0 we have l0|p0 = incr(cons(_1,_2)) adx(cons(_3,_4)) -> incr(cons(_3,n__adx(activate(_4)))) is in R let r'0 be the right-hand side of this rule theta0 = {_1/_3, _2/n__adx(activate(_4))} is a mgu of l0|p0 and r'0 ==> adx(cons(_1,_2)) -> activate(n__adx(activate(_2))) is in EU_R^1 let l1 be the left-hand side of this rule p1 = 0 is a position in l1 we have l1|p1 = cons(_1,_2) zeros -> cons(0,n__zeros) is in R let r'1 be the right-hand side of this rule theta1 = {_1/0, _2/n__zeros} is a mgu of l1|p1 and r'1 ==> adx(zeros) -> activate(n__adx(activate(n__zeros))) is in EU_R^2 let l2 be the left-hand side of this rule p2 = 0 is a position in l2 we have l2|p2 = zeros activate(n__zeros) -> zeros is in R let r'2 be the right-hand side of this rule theta2 = {} is a mgu of l2|p2 and r'2 ==> adx(activate(n__zeros)) -> activate(n__adx(activate(n__zeros))) is in EU_R^3 let l3 be the left-hand side of this rule p3 = epsilon is a position in l3 we have l3|p3 = adx(activate(n__zeros)) activate(n__adx(_1)) -> adx(activate(_1)) is in R let r'3 be the right-hand side of this rule theta3 = {_1/n__zeros} is a mgu of l3|p3 and r'3 ==> activate(n__adx(n__zeros)) -> activate(n__adx(activate(n__zeros))) is in EU_R^4 let l4 be the left-hand side of this rule p4 = 0.0 is a position in l4 we have l4|p4 = n__zeros activate(_1) -> _1 is in R let r'4 be the right-hand side of this rule theta4 = {_1/n__zeros} is a mgu of l4|p4 and r'4 ==> activate(n__adx(activate(n__zeros))) -> activate(n__adx(activate(n__zeros))) is in EU_R^5 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {} let theta' = {} we have r|p = activate(n__adx(activate(n__zeros))) and theta'(theta(l)) = theta(r|p) so, theta(l) = activate(n__adx(activate(n__zeros))) is non-terminating w.r.t. R Termination disproved by the backward process proof stopped at iteration i=5, depth k=3 1434 rule(s) generated