Problem: f(n__a(),X,X) -> f(activate(X),b(),n__b()) b() -> a() a() -> n__a() b() -> n__b() activate(n__a()) -> a() activate(n__b()) -> b() activate(X) -> X Proof: Matrix Interpretation Processor: dim=3 interpretation: [0] [a] = [0] [1], [0] [n__b] = [0] [0], [0] [b] = [0] [1], [1 0 1] [0] [activate](x0) = [0 1 0]x0 + [0] [0 0 1] [1], [1 0 0] [1 0 0] [1 1 1] [f](x0, x1, x2) = [0 0 0]x0 + [1 0 0]x1 + [1 0 0]x2 [0 0 0] [1 1 0] [1 0 0] , [0] [n__a] = [0] [1] orientation: [2 1 1] [1 0 1] f(n__a(),X,X) = [2 0 0]X >= [0 0 0]X = f(activate(X),b(),n__b()) [2 1 0] [0 0 0] [0] [0] b() = [0] >= [0] = a() [1] [1] [0] [0] a() = [0] >= [0] = n__a() [1] [1] [0] [0] b() = [0] >= [0] = n__b() [1] [0] [1] [0] activate(n__a()) = [0] >= [0] = a() [2] [1] [0] [0] activate(n__b()) = [0] >= [0] = b() [1] [1] [1 0 1] [0] activate(X) = [0 1 0]X + [0] >= X = X [0 0 1] [1] problem: f(n__a(),X,X) -> f(activate(X),b(),n__b()) b() -> a() a() -> n__a() b() -> n__b() activate(n__b()) -> b() activate(X) -> X Unfolding Processor: loop length: 5 terms: f(n__a(),n__b(),n__b()) f(activate(n__b()),b(),n__b()) f(b(),b(),n__b()) f(a(),b(),n__b()) f(n__a(),b(),n__b()) context: [] substitution: Qed