Problem:
f(n__a(),X,X) -> f(activate(X),b(),n__b())
b() -> a()
a() -> n__a()
b() -> n__b()
activate(n__a()) -> a()
activate(n__b()) -> b()
activate(X) -> X
Proof:
Matrix Interpretation Processor: dim=3
interpretation:
[0]
[a] = [0]
[1],
[0]
[n__b] = [0]
[0],
[0]
[b] = [0]
[1],
[1 0 1] [0]
[activate](x0) = [0 1 0]x0 + [0]
[0 0 1] [1],
[1 0 0] [1 0 0] [1 1 1]
[f](x0, x1, x2) = [0 0 0]x0 + [1 0 0]x1 + [1 0 0]x2
[0 0 0] [1 1 0] [1 0 0] ,
[0]
[n__a] = [0]
[1]
orientation:
[2 1 1] [1 0 1]
f(n__a(),X,X) = [2 0 0]X >= [0 0 0]X = f(activate(X),b(),n__b())
[2 1 0] [0 0 0]
[0] [0]
b() = [0] >= [0] = a()
[1] [1]
[0] [0]
a() = [0] >= [0] = n__a()
[1] [1]
[0] [0]
b() = [0] >= [0] = n__b()
[1] [0]
[1] [0]
activate(n__a()) = [0] >= [0] = a()
[2] [1]
[0] [0]
activate(n__b()) = [0] >= [0] = b()
[1] [1]
[1 0 1] [0]
activate(X) = [0 1 0]X + [0] >= X = X
[0 0 1] [1]
problem:
f(n__a(),X,X) -> f(activate(X),b(),n__b())
b() -> a()
a() -> n__a()
b() -> n__b()
activate(n__b()) -> b()
activate(X) -> X
Unfolding Processor:
loop length: 5
terms:
f(n__a(),n__b(),n__b())
f(activate(n__b()),b(),n__b())
f(b(),b(),n__b())
f(a(),b(),n__b())
f(n__a(),b(),n__b())
context: []
substitution:
Qed