Problem:
c() -> f(n__g(n__c()))
f(n__g(X)) -> g(activate(X))
g(X) -> n__g(X)
c() -> n__c()
activate(n__g(X)) -> g(X)
activate(n__c()) -> c()
activate(X) -> X
Proof:
Matrix Interpretation Processor: dim=1
interpretation:
[g](x0) = x0,
[activate](x0) = x0 + 1,
[f](x0) = 4x0 + 1,
[n__g](x0) = x0,
[n__c] = 0,
[c] = 1
orientation:
c() = 1 >= 1 = f(n__g(n__c()))
f(n__g(X)) = 4X + 1 >= X + 1 = g(activate(X))
g(X) = X >= X = n__g(X)
c() = 1 >= 0 = n__c()
activate(n__g(X)) = X + 1 >= X = g(X)
activate(n__c()) = 1 >= 1 = c()
activate(X) = X + 1 >= X = X
problem:
c() -> f(n__g(n__c()))
f(n__g(X)) -> g(activate(X))
g(X) -> n__g(X)
activate(n__c()) -> c()
Unfolding Processor:
loop length: 3
terms:
c()
f(n__g(n__c()))
g(activate(n__c()))
context: g([])
substitution:
Qed