(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 2·x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zip(x1, x2)) = x1 + 2·x2
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = 1 + 2·x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = x1 + 2·x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
tail(cons(X, XS)) → activate(XS)
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 2·x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zip(x1, x2)) = 1 + 2·x1 + x2
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = 2·x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = 1 + 2·x1 + x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
zip(nil, XS) → nil
zip(X, nil) → nil
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
(5) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = 2·x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 1 + 2·x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zip(x1, x2)) = x1 + x2
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 1 + 2·x1
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = x1 + x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
repItems(nil) → nil
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
(7) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(n__cons(x1, x2)) = 2·x1 + x2
POL(n__incr(x1)) = x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 2·x1
POL(n__take(x1, x2)) = 1 + 2·x1 + 2·x2
POL(n__zip(x1, x2)) = 2·x1 + 2·x2
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + 2·x1 + 2·x2
POL(zip(x1, x2)) = 2·x1 + 2·x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
take(0, XS) → nil
(8) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
(9) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PAIRNS → CONS(0, n__incr(n__oddNs))
ODDNS → INCR(pairNs)
ODDNS → PAIRNS
INCR(cons(X, XS)) → CONS(s(X), n__incr(activate(XS)))
INCR(cons(X, XS)) → ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) → CONS(X, n__take(N, activate(XS)))
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → CONS(pair(X, Y), n__zip(activate(XS), activate(YS)))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
REPITEMS(cons(X, XS)) → CONS(X, n__cons(X, n__repItems(activate(XS))))
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zip(X1, X2)) → ZIP(activate(X1), activate(X2))
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__repItems(X)) → REPITEMS(activate(X))
ACTIVATE(n__repItems(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ODDNS → INCR(pairNs)
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zip(X1, X2)) → ZIP(activate(X1), activate(X2))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__repItems(X)) → REPITEMS(activate(X))
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__repItems(X)) → ACTIVATE(X)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__repItems(X)) → REPITEMS(activate(X))
ACTIVATE(n__repItems(X)) → ACTIVATE(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(INCR(x1)) = x1
POL(ODDNS) = 0
POL(REPITEMS(x1)) = 2·x1
POL(TAKE(x1, x2)) = 1 + x1 + x2
POL(ZIP(x1, x2)) = x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(n__cons(x1, x2)) = 2·x1 + x2
POL(n__incr(x1)) = x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 2 + 2·x1
POL(n__take(x1, x2)) = 2 + x1 + x2
POL(n__zip(x1, x2)) = x1 + 2·x2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + 2·x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + x1 + x2
POL(zip(x1, x2)) = x1 + 2·x2
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ODDNS → INCR(pairNs)
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ACTIVATE(n__zip(X1, X2)) → ZIP(activate(X1), activate(X2))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(pairNs)
ACTIVATE(n__zip(X1, X2)) → ZIP(activate(X1), activate(X2))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__zip(X1, X2)) → ZIP(activate(X1), activate(X2))
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X2)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(INCR(x1)) = x1
POL(ODDNS) = 0
POL(ZIP(x1, x2)) = 2·x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 2·x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zip(x1, x2)) = 1 + 2·x1 + x2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = 1 + 2·x1 + x2
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(pairNs)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__incr(X)) → INCR(activate(X))
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(pairNs)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ODDNS →
INCR(
pairNs) at position [0] we obtained the following new rules [LPAR04]:
ODDNS → INCR(cons(0, n__incr(n__oddNs)))
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__incr(X)) → INCR(activate(X))
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ODDNS → INCR(cons(0, n__incr(n__oddNs)))
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVATE(x1)) = | -I | + | 0A | · | x1 |
POL(n__incr(x1)) = | 0A | + | 0A | · | x1 |
POL(INCR(x1)) = | -I | + | 0A | · | x1 |
POL(activate(x1)) = | 0A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 1A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(n__cons(x1, x2)) = | 1A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(incr(x1)) = | 0A | + | 0A | · | x1 |
POL(n__take(x1, x2)) = | 0A | + | -I | · | x1 | + | 0A | · | x2 |
POL(take(x1, x2)) = | 0A | + | -I | · | x1 | + | 0A | · | x2 |
POL(n__zip(x1, x2)) = | -I | + | 0A | · | x1 | + | -I | · | x2 |
POL(zip(x1, x2)) = | -I | + | 0A | · | x1 | + | -I | · | x2 |
POL(n__repItems(x1)) = | -I | + | 0A | · | x1 |
POL(repItems(x1)) = | -I | + | 0A | · | x1 |
POL(pair(x1, x2)) = | 0A | + | -I | · | x1 | + | -I | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
cons(X1, X2) → n__cons(X1, X2)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
oddNs → n__oddNs
oddNs → incr(pairNs)
pairNs → cons(0, n__incr(n__oddNs))
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
repItems(X) → n__repItems(X)
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__incr(X)) → INCR(activate(X))
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(cons(0, n__incr(n__oddNs)))
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ACTIVATE(
n__incr(
X)) →
INCR(
activate(
X)) at position [0] we obtained the following new rules [LPAR04]:
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__oddNs)) → INCR(oddNs)
ACTIVATE(n__incr(n__take(x0, x1))) → INCR(take(activate(x0), activate(x1)))
ACTIVATE(n__incr(n__zip(x0, x1))) → INCR(zip(activate(x0), activate(x1)))
ACTIVATE(n__incr(n__cons(x0, x1))) → INCR(cons(activate(x0), x1))
ACTIVATE(n__incr(n__repItems(x0))) → INCR(repItems(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(cons(0, n__incr(n__oddNs)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__oddNs)) → INCR(oddNs)
ACTIVATE(n__incr(n__take(x0, x1))) → INCR(take(activate(x0), activate(x1)))
ACTIVATE(n__incr(n__zip(x0, x1))) → INCR(zip(activate(x0), activate(x1)))
ACTIVATE(n__incr(n__cons(x0, x1))) → INCR(cons(activate(x0), x1))
ACTIVATE(n__incr(n__repItems(x0))) → INCR(repItems(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__incr(n__take(x0, x1))) → INCR(take(activate(x0), activate(x1)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(INCR(x1)) = 2·x1
POL(ODDNS) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = 2·x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 2·x1
POL(n__take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(n__zip(x1, x2)) = 2·x1 + 2·x2
POL(oddNs) = 0
POL(pair(x1, x2)) = 2·x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zip(x1, x2)) = 2·x1 + 2·x2
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(cons(0, n__incr(n__oddNs)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__oddNs)) → INCR(oddNs)
ACTIVATE(n__incr(n__zip(x0, x1))) → INCR(zip(activate(x0), activate(x1)))
ACTIVATE(n__incr(n__cons(x0, x1))) → INCR(cons(activate(x0), x1))
ACTIVATE(n__incr(n__repItems(x0))) → INCR(repItems(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__incr(n__repItems(x0))) → INCR(repItems(activate(x0)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(INCR(x1)) = x1
POL(ODDNS) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = 2·x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 1 + 2·x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zip(x1, x2)) = x1 + x2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 1 + 2·x1
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = x1 + x2
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(cons(0, n__incr(n__oddNs)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__oddNs)) → INCR(oddNs)
ACTIVATE(n__incr(n__zip(x0, x1))) → INCR(zip(activate(x0), activate(x1)))
ACTIVATE(n__incr(n__cons(x0, x1))) → INCR(cons(activate(x0), x1))
ACTIVATE(n__incr(x0)) → INCR(x0)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__incr(n__zip(x0, x1))) → INCR(zip(activate(x0), activate(x1)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(INCR(x1)) = 2·x1
POL(ODDNS) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__oddNs) = 0
POL(n__repItems(x1)) = 2·x1
POL(n__take(x1, x2)) = x1 + 2·x2
POL(n__zip(x1, x2)) = 2 + x1 + 2·x2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(zip(x1, x2)) = 2 + x1 + 2·x2
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ODDNS → INCR(cons(0, n__incr(n__oddNs)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__oddNs)) → INCR(oddNs)
ACTIVATE(n__incr(n__cons(x0, x1))) → INCR(cons(activate(x0), x1))
ACTIVATE(n__incr(x0)) → INCR(x0)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(n__oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNs → n__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) NonTerminationLoopProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ACTIVATE(
n__incr(
n__oddNs)) evaluates to t =
ACTIVATE(
n__incr(
n__oddNs))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceACTIVATE(n__incr(n__oddNs)) →
ACTIVATE(
n__oddNs)
with rule
ACTIVATE(
n__incr(
X)) →
ACTIVATE(
X) at position [] and matcher [
X /
n__oddNs]
ACTIVATE(n__oddNs) →
ODDNSwith rule
ACTIVATE(
n__oddNs) →
ODDNS at position [] and matcher [ ]
ODDNS →
INCR(
cons(
0,
n__incr(
n__oddNs)))
with rule
ODDNS →
INCR(
cons(
0,
n__incr(
n__oddNs))) at position [] and matcher [ ]
INCR(cons(0, n__incr(n__oddNs))) →
ACTIVATE(
n__incr(
n__oddNs))
with rule
INCR(
cons(
X,
XS)) →
ACTIVATE(
XS)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(34) NO