let R be the TRS under consideration isNatIList(n__cons(_1,_2)) -> and(isNat(activate(_1)),isNatIList(activate(_2))) is in elim_R(R) let r0 be the right-hand side of this rule p0 = 1.0 is a position in r0 we have r0|p0 = activate(_2) activate(n__zeros) -> zeros is in R let l'0 be the left-hand side of this rule theta0 = {_2/n__zeros} is a mgu of r0|p0 and l'0 ==> isNatIList(n__cons(_1,n__zeros)) -> and(isNat(activate(_1)),isNatIList(zeros)) is in EU_R^1 let r1 be the right-hand side of this rule p1 = 1.0 is a position in r1 we have r1|p1 = zeros zeros -> cons(0,n__zeros) is in R let l'1 be the left-hand side of this rule theta1 = {} is a mgu of r1|p1 and l'1 ==> isNatIList(n__cons(_1,n__zeros)) -> and(isNat(activate(_1)),isNatIList(cons(0,n__zeros))) is in EU_R^2 let r2 be the right-hand side of this rule p2 = 1.0 is a position in r2 we have r2|p2 = cons(0,n__zeros) cons(_2,_3) -> n__cons(_2,_3) is in R let l'2 be the left-hand side of this rule theta2 = {_2/0, _3/n__zeros} is a mgu of r2|p2 and l'2 ==> isNatIList(n__cons(_1,n__zeros)) -> and(isNat(activate(_1)),isNatIList(n__cons(0,n__zeros))) is in EU_R^3 let l be the left-hand side and r be the right-hand side of this rule let p = 1 let theta = {_1/0} let theta' = {} we have r|p = isNatIList(n__cons(0,n__zeros)) and theta'(theta(l)) = theta(r|p) so, theta(l) = isNatIList(n__cons(0,n__zeros)) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=3, depth k=3 9229 rule(s) generated