let R be the TRS under consideration

isNatIList(n__cons(_1,_2)) -> and(isNat(activate(_1)),isNatIList(activate(_2))) is in elim_R(R)
let r0 be the right-hand side of this rule
p0 = 1.0 is a position in r0
we have r0|p0 = activate(_2)
activate(n__zeros) -> zeros is in R
let l'0 be the left-hand side of this rule
theta0 = {_2/n__zeros} is a mgu of r0|p0 and l'0

==> isNatIList(n__cons(_1,n__zeros)) -> and(isNat(activate(_1)),isNatIList(zeros)) is in EU_R^1
let r1 be the right-hand side of this rule
p1 = 1.0 is a position in r1
we have r1|p1 = zeros
zeros -> cons(0,n__zeros) is in R
let l'1 be the left-hand side of this rule
theta1 = {} is a mgu of r1|p1 and l'1

==> isNatIList(n__cons(_1,n__zeros)) -> and(isNat(activate(_1)),isNatIList(cons(0,n__zeros))) is in EU_R^2
let r2 be the right-hand side of this rule
p2 = 1.0 is a position in r2
we have r2|p2 = cons(0,n__zeros)
cons(_2,_3) -> n__cons(_2,_3) is in R
let l'2 be the left-hand side of this rule
theta2 = {_2/0, _3/n__zeros} is a mgu of r2|p2 and l'2

==> isNatIList(n__cons(_1,n__zeros)) -> and(isNat(activate(_1)),isNatIList(n__cons(0,n__zeros))) is in EU_R^3
let l be the left-hand side and r be the right-hand side of this rule
let p = 1
let theta = {_1/0}
let theta' = {}
we have r|p = isNatIList(n__cons(0,n__zeros)) and
theta'(theta(l)) = theta(r|p)
so, theta(l) = isNatIList(n__cons(0,n__zeros)) is non-terminating w.r.t. R

Termination disproved by the forward process
proof stopped at iteration i=3, depth k=3
9229 rule(s) generated