let R be the TRS under consideration f(g(_1),_2) -> f(_1,n__f(n__g(_1),activate(_2))) is in elim_R(R) let r0 be the right-hand side of this rule p0 = epsilon is a position in r0 we have r0|p0 = f(_1,n__f(n__g(_1),activate(_2))) f(_3,_4) -> n__f(_3,_4) is in R let l'0 be the left-hand side of this rule theta0 = {_1/_3, _4/n__f(n__g(_3),activate(_2))} is a mgu of r0|p0 and l'0 ==> f(g(_1),_2) -> activate(_2) is in EU_R^1 let r1 be the right-hand side of this rule p1 = epsilon is a position in r1 we have r1|p1 = activate(_2) activate(n__f(_3,_4)) -> f(activate(_3),_4) is in R let l'1 be the left-hand side of this rule theta1 = {_2/n__f(_3,_4)} is a mgu of r1|p1 and l'1 ==> f(g(_1),n__f(_2,_3)) -> f(activate(_2),_3) is in EU_R^2 let r2 be the right-hand side of this rule p2 = 0 is a position in r2 we have r2|p2 = activate(_2) activate(n__g(_4)) -> g(activate(_4)) is in R let l'2 be the left-hand side of this rule theta2 = {_2/n__g(_4)} is a mgu of r2|p2 and l'2 ==> f(g(_1),n__f(n__g(_2),_3)) -> f(g(activate(_2)),_3) is in EU_R^3 let r3 be the right-hand side of this rule p3 = 0.0 is a position in r3 we have r3|p3 = activate(_2) activate(_4) -> _4 is in R let l'3 be the left-hand side of this rule theta3 = {_2/_4} is a mgu of r3|p3 and l'3 ==> f(g(_1),n__f(n__g(_2),_3)) -> f(g(_2),_3) is in EU_R^4 let r4 be the right-hand side of this rule p4 = epsilon is a position in r4 we have r4|p4 = f(g(_2),_3) f(g(_4),_5) -> f(_4,n__f(n__g(_4),activate(_5))) is in R let l'4 be the left-hand side of this rule theta4 = {_2/_4, _3/_5} is a mgu of r4|p4 and l'4 ==> f(g(_1),n__f(n__g(_2),_3)) -> f(_2,n__f(n__g(_2),activate(_3))) is in EU_R^5 let r5 be the right-hand side of this rule p5 = 0 is a position in r5 we have r5|p5 = _2 activate(n__g(_4)) -> g(activate(_4)) is in R let l'5 be the left-hand side of this rule theta5 = {_2/activate(n__g(_4))} is a mgu of r5|p5 and l'5 ==> f(g(_1),n__f(n__g(activate(n__g(_2))),_3)) -> f(g(activate(_2)),n__f(n__g(activate(n__g(_2))),activate(_3))) is in EU_R^6 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {} let theta' = {_1/activate(_2), _2/_2, _3/activate(_3)} we have r|p = f(g(activate(_2)),n__f(n__g(activate(n__g(_2))),activate(_3))) and theta'(theta(l)) = theta(r|p) so, theta(l) = f(g(_1),n__f(n__g(activate(n__g(_2))),_3)) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=6, depth k=3 366 rule(s) generated