(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__g(X)) → G(activate(X))
ACTIVATE(n__g(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__g(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [x0 / activate(x0)] on the rule
F(g(g(x1)), activate(x0))[ ]n[ ] → F(g(g(x1)), activate(x0))[ ]n[x0 / activate(x0)]
This rule is correct for the QDP as the following derivation shows:

intermediate steps: Equivalent (Simplify mu) - Instantiate mu - Instantiation
F(g(g(y1)), x0)[ ]n[ ] → F(g(g(y1)), activate(x0))[ ]n[ ]
    by Narrowing at position: []
        intermediate steps: Instantiation - Instantiation
        F(g(X), Y)[ ]n[ ] → F(X, n__f(n__g(X), activate(Y)))[ ]n[ ]
            by OriginalRule from TRS P

        intermediate steps: Instantiation - Instantiation - Instantiation - Instantiation
        F(g(x2), n__f(n__g(x0), x1))[ ]n[ ] → F(g(x0), x1)[ ]n[ ]
            by Narrowing at position: [0,0]
                intermediate steps: Instantiation
                F(g(x2), n__f(n__g(y0), x0))[ ]n[ ] → F(g(activate(y0)), x0)[ ]n[ ]
                    by Narrowing at position: [0]
                        intermediate steps: Instantiation - Instantiation
                        F(g(x1), n__f(y1, y0))[ ]n[ ] → F(activate(y1), y0)[ ]n[ ]
                            by Narrowing at position: []
                                intermediate steps: Instantiation - Instantiation
                                F(g(X), Y)[ ]n[ ] → ACTIVATE(Y)[ ]n[ ]
                                    by OriginalRule from TRS P

                                intermediate steps: Instantiation
                                ACTIVATE(n__f(X1, X2))[ ]n[ ] → F(activate(X1), X2)[ ]n[ ]
                                    by OriginalRule from TRS P

                        intermediate steps: Instantiation
                        activate(n__g(X))[ ]n[ ] → g(activate(X))[ ]n[ ]
                            by OriginalRule from TRS R

                intermediate steps: Instantiation - Instantiation
                activate(X)[ ]n[ ] → X[ ]n[ ]
                    by OriginalRule from TRS R

(6) NO