(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(b, X, c)) → MARK(f(X, c, X))
ACTIVE(f(b, X, c)) → F(X, c, X)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, mark(X2), X3))
MARK(f(X1, X2, X3)) → F(X1, mark(X2), X3)
MARK(f(X1, X2, X3)) → MARK(X2)
MARK(b) → ACTIVE(b)
MARK(c) → ACTIVE(c)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- F(X1, mark(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(mark(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
- F(X1, X2, mark(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
- F(active(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
- F(X1, active(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(X1, X2, active(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, mark(X2), X3))
ACTIVE(f(b, X, c)) → MARK(f(X, c, X))
MARK(f(X1, X2, X3)) → MARK(X2)
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(f(X1, X2, X3)) → MARK(X2)
Used ordering: Polynomial interpretation [POLO]:
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(b) = 0
POL(c) = 0
POL(f(x1, x2, x3)) = 1 + x1 + 2·x2 + x3
POL(mark(x1)) = x1
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, mark(X2), X3))
ACTIVE(f(b, X, c)) → MARK(f(X, c, X))
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ACTIVE(
f(
mark(
c),
X2',
mark(
c))) evaluates to t =
ACTIVE(
f(
X2',
mark(
c),
X2'))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [X2' / mark(c)]
Rewriting sequenceACTIVE(f(mark(c), mark(c), mark(c))) →
ACTIVE(
f(
active(
c),
mark(
c),
mark(
c)))
with rule
mark(
c) →
active(
c) at position [0,0] and matcher [ ]
ACTIVE(f(active(c), mark(c), mark(c))) →
ACTIVE(
f(
mark(
b),
mark(
c),
mark(
c)))
with rule
active(
c) →
mark(
b) at position [0,0] and matcher [ ]
ACTIVE(f(mark(b), mark(c), mark(c))) →
ACTIVE(
f(
mark(
b),
mark(
c),
c))
with rule
f(
X1,
X2',
mark(
X3)) →
f(
X1,
X2',
X3) at position [0] and matcher [
X1 /
mark(
b),
X2' /
mark(
c),
X3 /
c]
ACTIVE(f(mark(b), mark(c), c)) →
ACTIVE(
f(
b,
mark(
c),
c))
with rule
f(
mark(
X1),
X2,
X3) →
f(
X1,
X2,
X3) at position [0] and matcher [
X1 /
b,
X2 /
mark(
c),
X3 /
c]
ACTIVE(f(b, mark(c), c)) →
MARK(
f(
mark(
c),
c,
mark(
c)))
with rule
ACTIVE(
f(
b,
X,
c)) →
MARK(
f(
X,
c,
X)) at position [] and matcher [
X /
mark(
c)]
MARK(f(mark(c), c, mark(c))) →
ACTIVE(
f(
mark(
c),
mark(
c),
mark(
c)))
with rule
MARK(
f(
X1,
X2,
X3)) →
ACTIVE(
f(
X1,
mark(
X2),
X3))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(14) NO