Problem:
a__f(b(),X,c()) -> a__f(X,a__c(),X)
a__c() -> b()
mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
mark(c()) -> a__c()
mark(b()) -> b()
a__f(X1,X2,X3) -> f(X1,X2,X3)
a__c() -> c()
Proof:
Matrix Interpretation Processor: dim=1
interpretation:
[mark](x0) = 2x0 + 1,
[f](x0, x1, x2) = x0 + 6x1 + 2x2 + 5,
[a__c] = 0,
[a__f](x0, x1, x2) = 2x0 + 6x1 + 4x2 + 5,
[c] = 0,
[b] = 0
orientation:
a__f(b(),X,c()) = 6X + 5 >= 6X + 5 = a__f(X,a__c(),X)
a__c() = 0 >= 0 = b()
mark(f(X1,X2,X3)) = 2X1 + 12X2 + 4X3 + 11 >= 2X1 + 12X2 + 4X3 + 11 = a__f(X1,mark(X2),X3)
mark(c()) = 1 >= 0 = a__c()
mark(b()) = 1 >= 0 = b()
a__f(X1,X2,X3) = 2X1 + 6X2 + 4X3 + 5 >= X1 + 6X2 + 2X3 + 5 = f(X1,X2,X3)
a__c() = 0 >= 0 = c()
problem:
a__f(b(),X,c()) -> a__f(X,a__c(),X)
a__c() -> b()
mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
a__f(X1,X2,X3) -> f(X1,X2,X3)
a__c() -> c()
Matrix Interpretation Processor: dim=1
interpretation:
[mark](x0) = 4x0 + 2,
[f](x0, x1, x2) = x0 + 5x1 + x2 + 4,
[a__c] = 0,
[a__f](x0, x1, x2) = 4x0 + 5x1 + x2 + 4,
[c] = 0,
[b] = 0
orientation:
a__f(b(),X,c()) = 5X + 4 >= 5X + 4 = a__f(X,a__c(),X)
a__c() = 0 >= 0 = b()
mark(f(X1,X2,X3)) = 4X1 + 20X2 + 4X3 + 18 >= 4X1 + 20X2 + X3 + 14 = a__f(X1,mark(X2),X3)
a__f(X1,X2,X3) = 4X1 + 5X2 + X3 + 4 >= X1 + 5X2 + X3 + 4 = f(X1,X2,X3)
a__c() = 0 >= 0 = c()
problem:
a__f(b(),X,c()) -> a__f(X,a__c(),X)
a__c() -> b()
a__f(X1,X2,X3) -> f(X1,X2,X3)
a__c() -> c()
Matrix Interpretation Processor: dim=1
interpretation:
[f](x0, x1, x2) = x0 + 2x1 + 4x2,
[a__c] = 0,
[a__f](x0, x1, x2) = 2x0 + 6x1 + 4x2 + 1,
[c] = 0,
[b] = 0
orientation:
a__f(b(),X,c()) = 6X + 1 >= 6X + 1 = a__f(X,a__c(),X)
a__c() = 0 >= 0 = b()
a__f(X1,X2,X3) = 2X1 + 6X2 + 4X3 + 1 >= X1 + 2X2 + 4X3 = f(X1,X2,X3)
a__c() = 0 >= 0 = c()
problem:
a__f(b(),X,c()) -> a__f(X,a__c(),X)
a__c() -> b()
a__c() -> c()
Unfolding Processor:
loop length: 3
terms:
a__f(a__c(),a__c(),a__c())
a__f(a__c(),a__c(),c())
a__f(b(),a__c(),c())
context: []
substitution:
Qed