(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(X)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X, n__g(X), Y) → F(activate(Y), activate(Y), activate(Y))
F(X, n__g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__g(X)) → G(X)

The TRS R consists of the following rules:

f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X, n__g(X), Y) → F(activate(Y), activate(Y), activate(Y))

The TRS R consists of the following rules:

f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [x0 / c] on the rule
F(c, n__g(c), n__g(b))[ ]n[ ] → F(c, n__g(c), n__g(b))[ ]n[x0 / c]
This rule is correct for the QDP as the following derivation shows:

intermediate steps: Equivalent (Simplify mu) - Instantiate mu
F(x0, n__g(x0), n__g(b))[ ]n[ ] → F(c, n__g(c), n__g(b))[ ]n[ ]
    by Narrowing at position: [2]
        F(x0, n__g(x0), n__g(b))[ ]n[ ] → F(c, n__g(c), activate(n__g(b)))[ ]n[ ]
            by Narrowing at position: [1]
                F(x0, n__g(x0), n__g(b))[ ]n[ ] → F(c, activate(n__g(c)), activate(n__g(b)))[ ]n[ ]
                    by Narrowing at position: [1,0,0]
                        intermediate steps: Instantiation
                        F(x1, n__g(x1), n__g(b))[ ]n[ ] → F(c, activate(n__g(b)), activate(n__g(b)))[ ]n[ ]
                            by Narrowing at position: [0]
                                intermediate steps: Instantiation - Instantiation
                                F(x1, n__g(x1), n__g(y0))[ ]n[ ] → F(g(y0), activate(n__g(y0)), activate(n__g(y0)))[ ]n[ ]
                                    by Narrowing at position: [0]
                                        intermediate steps: Instantiation - Instantiation
                                        F(X, n__g(X), Y)[ ]n[ ] → F(activate(Y), activate(Y), activate(Y))[ ]n[ ]
                                            by OriginalRule from TRS P

                                        intermediate steps: Instantiation
                                        activate(n__g(X))[ ]n[ ] → g(X)[ ]n[ ]
                                            by OriginalRule from TRS R

                                g(b)[ ]n[ ] → c[ ]n[ ]
                                    by OriginalRule from TRS R

                        b[ ]n[ ] → c[ ]n[ ]
                            by OriginalRule from TRS R

                intermediate steps: Instantiation - Instantiation
                activate(X)[ ]n[ ] → X[ ]n[ ]
                    by OriginalRule from TRS R

        intermediate steps: Instantiation - Instantiation
        activate(X)[ ]n[ ] → X[ ]n[ ]
            by OriginalRule from TRS R

(6) NO