Problem:
g(X) -> h(activate(X))
c() -> d()
h(n__d()) -> g(n__c())
d() -> n__d()
c() -> n__c()
activate(n__d()) -> d()
activate(n__c()) -> c()
activate(X) -> X
Proof:
Matrix Interpretation Processor: dim=3
interpretation:
[0]
[n__c] = [1]
[0],
[0]
[n__d] = [0]
[1],
[0]
[d] = [0]
[1],
[0]
[c] = [1]
[1],
[1 0 0] [1]
[h](x0) = [0 0 0]x0 + [1]
[0 0 0] [0],
[1 0 1]
[activate](x0) = [0 1 0]x0
[0 1 1] ,
[1 0 1] [1]
[g](x0) = [1 0 0]x0 + [1]
[1 0 1] [0]
orientation:
[1 0 1] [1] [1 0 1] [1]
g(X) = [1 0 0]X + [1] >= [0 0 0]X + [1] = h(activate(X))
[1 0 1] [0] [0 0 0] [0]
[0] [0]
c() = [1] >= [0] = d()
[1] [1]
[1] [1]
h(n__d()) = [1] >= [1] = g(n__c())
[0] [0]
[0] [0]
d() = [0] >= [0] = n__d()
[1] [1]
[0] [0]
c() = [1] >= [1] = n__c()
[1] [0]
[1] [0]
activate(n__d()) = [0] >= [0] = d()
[1] [1]
[0] [0]
activate(n__c()) = [1] >= [1] = c()
[1] [1]
[1 0 1]
activate(X) = [0 1 0]X >= X = X
[0 1 1]
problem:
g(X) -> h(activate(X))
c() -> d()
h(n__d()) -> g(n__c())
d() -> n__d()
c() -> n__c()
activate(n__c()) -> c()
activate(X) -> X
Matrix Interpretation Processor: dim=3
interpretation:
[0]
[n__c] = [1]
[0],
[1]
[n__d] = [0]
[0],
[1]
[d] = [0]
[0],
[1]
[c] = [1]
[0],
[1 0 1]
[h](x0) = [1 0 0]x0
[0 0 0] ,
[1 1 0]
[activate](x0) = [1 1 0]x0
[0 0 1] ,
[1 1 1]
[g](x0) = [1 1 0]x0
[0 0 1]
orientation:
[1 1 1] [1 1 1]
g(X) = [1 1 0]X >= [1 1 0]X = h(activate(X))
[0 0 1] [0 0 0]
[1] [1]
c() = [1] >= [0] = d()
[0] [0]
[1] [1]
h(n__d()) = [1] >= [1] = g(n__c())
[0] [0]
[1] [1]
d() = [0] >= [0] = n__d()
[0] [0]
[1] [0]
c() = [1] >= [1] = n__c()
[0] [0]
[1] [1]
activate(n__c()) = [1] >= [1] = c()
[0] [0]
[1 1 0]
activate(X) = [1 1 0]X >= X = X
[0 0 1]
problem:
g(X) -> h(activate(X))
c() -> d()
h(n__d()) -> g(n__c())
d() -> n__d()
activate(n__c()) -> c()
activate(X) -> X
Matrix Interpretation Processor: dim=3
interpretation:
[0]
[n__c] = [0]
[0],
[1]
[n__d] = [0]
[0],
[1]
[d] = [1]
[0],
[1]
[c] = [1]
[0],
[1 0 1] [0]
[h](x0) = [0 0 0]x0 + [1]
[0 0 0] [0],
[1 1 0] [1]
[activate](x0) = [1 1 0]x0 + [1]
[0 0 1] [0],
[1 1 1] [1]
[g](x0) = [0 0 1]x0 + [1]
[0 0 0] [0]
orientation:
[1 1 1] [1] [1 1 1] [1]
g(X) = [0 0 1]X + [1] >= [0 0 0]X + [1] = h(activate(X))
[0 0 0] [0] [0 0 0] [0]
[1] [1]
c() = [1] >= [1] = d()
[0] [0]
[1] [1]
h(n__d()) = [1] >= [1] = g(n__c())
[0] [0]
[1] [1]
d() = [1] >= [0] = n__d()
[0] [0]
[1] [1]
activate(n__c()) = [1] >= [1] = c()
[0] [0]
[1 1 0] [1]
activate(X) = [1 1 0]X + [1] >= X = X
[0 0 1] [0]
problem:
g(X) -> h(activate(X))
c() -> d()
h(n__d()) -> g(n__c())
d() -> n__d()
activate(n__c()) -> c()
Unfolding Processor:
loop length: 5
terms:
g(n__c())
h(activate(n__c()))
h(c())
h(d())
h(n__d())
context: []
substitution:
Qed