Problem: g(X) -> h(activate(X)) c() -> d() h(n__d()) -> g(n__c()) d() -> n__d() c() -> n__c() activate(n__d()) -> d() activate(n__c()) -> c() activate(X) -> X Proof: Matrix Interpretation Processor: dim=3 interpretation: [0] [n__c] = [1] [0], [0] [n__d] = [0] [1], [0] [d] = [0] [1], [0] [c] = [1] [1], [1 0 0] [1] [h](x0) = [0 0 0]x0 + [1] [0 0 0] [0], [1 0 1] [activate](x0) = [0 1 0]x0 [0 1 1] , [1 0 1] [1] [g](x0) = [1 0 0]x0 + [1] [1 0 1] [0] orientation: [1 0 1] [1] [1 0 1] [1] g(X) = [1 0 0]X + [1] >= [0 0 0]X + [1] = h(activate(X)) [1 0 1] [0] [0 0 0] [0] [0] [0] c() = [1] >= [0] = d() [1] [1] [1] [1] h(n__d()) = [1] >= [1] = g(n__c()) [0] [0] [0] [0] d() = [0] >= [0] = n__d() [1] [1] [0] [0] c() = [1] >= [1] = n__c() [1] [0] [1] [0] activate(n__d()) = [0] >= [0] = d() [1] [1] [0] [0] activate(n__c()) = [1] >= [1] = c() [1] [1] [1 0 1] activate(X) = [0 1 0]X >= X = X [0 1 1] problem: g(X) -> h(activate(X)) c() -> d() h(n__d()) -> g(n__c()) d() -> n__d() c() -> n__c() activate(n__c()) -> c() activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [0] [n__c] = [1] [0], [1] [n__d] = [0] [0], [1] [d] = [0] [0], [1] [c] = [1] [0], [1 0 1] [h](x0) = [1 0 0]x0 [0 0 0] , [1 1 0] [activate](x0) = [1 1 0]x0 [0 0 1] , [1 1 1] [g](x0) = [1 1 0]x0 [0 0 1] orientation: [1 1 1] [1 1 1] g(X) = [1 1 0]X >= [1 1 0]X = h(activate(X)) [0 0 1] [0 0 0] [1] [1] c() = [1] >= [0] = d() [0] [0] [1] [1] h(n__d()) = [1] >= [1] = g(n__c()) [0] [0] [1] [1] d() = [0] >= [0] = n__d() [0] [0] [1] [0] c() = [1] >= [1] = n__c() [0] [0] [1] [1] activate(n__c()) = [1] >= [1] = c() [0] [0] [1 1 0] activate(X) = [1 1 0]X >= X = X [0 0 1] problem: g(X) -> h(activate(X)) c() -> d() h(n__d()) -> g(n__c()) d() -> n__d() activate(n__c()) -> c() activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [0] [n__c] = [0] [0], [1] [n__d] = [0] [0], [1] [d] = [1] [0], [1] [c] = [1] [0], [1 0 1] [0] [h](x0) = [0 0 0]x0 + [1] [0 0 0] [0], [1 1 0] [1] [activate](x0) = [1 1 0]x0 + [1] [0 0 1] [0], [1 1 1] [1] [g](x0) = [0 0 1]x0 + [1] [0 0 0] [0] orientation: [1 1 1] [1] [1 1 1] [1] g(X) = [0 0 1]X + [1] >= [0 0 0]X + [1] = h(activate(X)) [0 0 0] [0] [0 0 0] [0] [1] [1] c() = [1] >= [1] = d() [0] [0] [1] [1] h(n__d()) = [1] >= [1] = g(n__c()) [0] [0] [1] [1] d() = [1] >= [0] = n__d() [0] [0] [1] [1] activate(n__c()) = [1] >= [1] = c() [0] [0] [1 1 0] [1] activate(X) = [1 1 0]X + [1] >= X = X [0 0 1] [0] problem: g(X) -> h(activate(X)) c() -> d() h(n__d()) -> g(n__c()) d() -> n__d() activate(n__c()) -> c() Unfolding Processor: loop length: 5 terms: g(n__c()) h(activate(n__c())) h(c()) h(d()) h(n__d()) context: [] substitution: Qed