(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(head(x1)) = 2 + 2·x1
POL(incr(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__nats) = 0
POL(n__odds) = 0
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = x1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
head(cons(X, XS)) → X
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__nats) = 0
POL(n__odds) = 0
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 2 + 2·x1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
tail(cons(X, XS)) → activate(XS)
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ODDS → INCR(pairs)
ODDS → PAIRS
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__nats) → NATS
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
ODDS → INCR(pairs)
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) NonLoopProof (EQUIVALENT transformation)
By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [x0 / 0] on the rule
INCR(cons(0, n__incr(n__nats)))[ ]n[ ] → INCR(cons(0, n__incr(n__nats)))[ ]n[x0 / 0]
This rule is correct for the QDP as the following derivation shows:
intermediate steps: Equivalent (Simplify mu) - Instantiate mu
INCR(cons(x0, n__incr(n__nats)))[ ]n[ ] → INCR(cons(0, n__incr(n__nats)))[ ]n[ ]
by Narrowing at position: [0]
intermediate steps: Instantiation
INCR(cons(x1, n__incr(n__nats)))[ ]n[ ] → INCR(nats)[ ]n[ ]
by Narrowing at position: [0]
intermediate steps: Instantiation - Instantiation
INCR(cons(x1, n__incr(y0)))[ ]n[ ] → INCR(activate(y0))[ ]n[ ]
by Narrowing at position: []
intermediate steps: Instantiation - Instantiation
INCR(cons(X, XS))[ ]n[ ] → ACTIVATE(XS)[ ]n[ ]
by OriginalRule from TRS P
intermediate steps: Instantiation
ACTIVATE(n__incr(X))[ ]n[ ] → INCR(activate(X))[ ]n[ ]
by OriginalRule from TRS P
activate(n__nats)[ ]n[ ] → nats[ ]n[ ]
by OriginalRule from TRS R
nats[ ]n[ ] → cons(0, n__incr(n__nats))[ ]n[ ]
by OriginalRule from TRS R
(10) NO