Problem:
a__h(X) -> a__g(mark(X),X)
a__g(a(),X) -> a__f(b(),X)
a__f(X,X) -> a__h(a__a())
a__a() -> b()
mark(h(X)) -> a__h(mark(X))
mark(g(X1,X2)) -> a__g(mark(X1),X2)
mark(a()) -> a__a()
mark(f(X1,X2)) -> a__f(mark(X1),X2)
mark(b()) -> b()
a__h(X) -> h(X)
a__g(X1,X2) -> g(X1,X2)
a__a() -> a()
a__f(X1,X2) -> f(X1,X2)
Proof:
Matrix Interpretation Processor: dim=1
interpretation:
[f](x0, x1) = 4x0 + x1 + 1,
[g](x0, x1) = x0 + x1 + 1,
[h](x0) = 5x0 + 1,
[a__a] = 0,
[a__f](x0, x1) = 4x0 + x1 + 1,
[b] = 0,
[a] = 0,
[a__g](x0, x1) = x0 + x1 + 1,
[mark](x0) = 4x0,
[a__h](x0) = 5x0 + 1
orientation:
a__h(X) = 5X + 1 >= 5X + 1 = a__g(mark(X),X)
a__g(a(),X) = X + 1 >= X + 1 = a__f(b(),X)
a__f(X,X) = 5X + 1 >= 1 = a__h(a__a())
a__a() = 0 >= 0 = b()
mark(h(X)) = 20X + 4 >= 20X + 1 = a__h(mark(X))
mark(g(X1,X2)) = 4X1 + 4X2 + 4 >= 4X1 + X2 + 1 = a__g(mark(X1),X2)
mark(a()) = 0 >= 0 = a__a()
mark(f(X1,X2)) = 16X1 + 4X2 + 4 >= 16X1 + X2 + 1 = a__f(mark(X1),X2)
mark(b()) = 0 >= 0 = b()
a__h(X) = 5X + 1 >= 5X + 1 = h(X)
a__g(X1,X2) = X1 + X2 + 1 >= X1 + X2 + 1 = g(X1,X2)
a__a() = 0 >= 0 = a()
a__f(X1,X2) = 4X1 + X2 + 1 >= 4X1 + X2 + 1 = f(X1,X2)
problem:
a__h(X) -> a__g(mark(X),X)
a__g(a(),X) -> a__f(b(),X)
a__f(X,X) -> a__h(a__a())
a__a() -> b()
mark(a()) -> a__a()
mark(b()) -> b()
a__h(X) -> h(X)
a__g(X1,X2) -> g(X1,X2)
a__a() -> a()
a__f(X1,X2) -> f(X1,X2)
Matrix Interpretation Processor: dim=1
interpretation:
[f](x0, x1) = 4x0 + x1 + 1,
[g](x0, x1) = x0 + x1 + 1,
[h](x0) = 2x0,
[a__a] = 0,
[a__f](x0, x1) = 5x0 + x1 + 1,
[b] = 0,
[a] = 0,
[a__g](x0, x1) = x0 + x1 + 1,
[mark](x0) = x0,
[a__h](x0) = 2x0 + 1
orientation:
a__h(X) = 2X + 1 >= 2X + 1 = a__g(mark(X),X)
a__g(a(),X) = X + 1 >= X + 1 = a__f(b(),X)
a__f(X,X) = 6X + 1 >= 1 = a__h(a__a())
a__a() = 0 >= 0 = b()
mark(a()) = 0 >= 0 = a__a()
mark(b()) = 0 >= 0 = b()
a__h(X) = 2X + 1 >= 2X = h(X)
a__g(X1,X2) = X1 + X2 + 1 >= X1 + X2 + 1 = g(X1,X2)
a__a() = 0 >= 0 = a()
a__f(X1,X2) = 5X1 + X2 + 1 >= 4X1 + X2 + 1 = f(X1,X2)
problem:
a__h(X) -> a__g(mark(X),X)
a__g(a(),X) -> a__f(b(),X)
a__f(X,X) -> a__h(a__a())
a__a() -> b()
mark(a()) -> a__a()
mark(b()) -> b()
a__g(X1,X2) -> g(X1,X2)
a__a() -> a()
a__f(X1,X2) -> f(X1,X2)
Matrix Interpretation Processor: dim=1
interpretation:
[f](x0, x1) = 2x0 + x1 + 2,
[g](x0, x1) = x0 + x1,
[a__a] = 0,
[a__f](x0, x1) = 4x0 + x1 + 2,
[b] = 0,
[a] = 0,
[a__g](x0, x1) = 2x0 + x1 + 2,
[mark](x0) = x0,
[a__h](x0) = 3x0 + 2
orientation:
a__h(X) = 3X + 2 >= 3X + 2 = a__g(mark(X),X)
a__g(a(),X) = X + 2 >= X + 2 = a__f(b(),X)
a__f(X,X) = 5X + 2 >= 2 = a__h(a__a())
a__a() = 0 >= 0 = b()
mark(a()) = 0 >= 0 = a__a()
mark(b()) = 0 >= 0 = b()
a__g(X1,X2) = 2X1 + X2 + 2 >= X1 + X2 = g(X1,X2)
a__a() = 0 >= 0 = a()
a__f(X1,X2) = 4X1 + X2 + 2 >= 2X1 + X2 + 2 = f(X1,X2)
problem:
a__h(X) -> a__g(mark(X),X)
a__g(a(),X) -> a__f(b(),X)
a__f(X,X) -> a__h(a__a())
a__a() -> b()
mark(a()) -> a__a()
mark(b()) -> b()
a__a() -> a()
a__f(X1,X2) -> f(X1,X2)
Matrix Interpretation Processor: dim=1
interpretation:
[f](x0, x1) = 4x0 + x1,
[a__a] = 0,
[a__f](x0, x1) = 6x0 + x1 + 1,
[b] = 0,
[a] = 0,
[a__g](x0, x1) = x0 + x1 + 1,
[mark](x0) = 6x0,
[a__h](x0) = 7x0 + 1
orientation:
a__h(X) = 7X + 1 >= 7X + 1 = a__g(mark(X),X)
a__g(a(),X) = X + 1 >= X + 1 = a__f(b(),X)
a__f(X,X) = 7X + 1 >= 1 = a__h(a__a())
a__a() = 0 >= 0 = b()
mark(a()) = 0 >= 0 = a__a()
mark(b()) = 0 >= 0 = b()
a__a() = 0 >= 0 = a()
a__f(X1,X2) = 6X1 + X2 + 1 >= 4X1 + X2 = f(X1,X2)
problem:
a__h(X) -> a__g(mark(X),X)
a__g(a(),X) -> a__f(b(),X)
a__f(X,X) -> a__h(a__a())
a__a() -> b()
mark(a()) -> a__a()
mark(b()) -> b()
a__a() -> a()
Unfolding Processor:
loop length: 7
terms:
a__g(mark(a__a()),b())
a__g(mark(a()),b())
a__g(a__a(),b())
a__g(a(),b())
a__f(b(),b())
a__h(a__a())
a__g(mark(a__a()),a__a())
context: []
substitution:
Qed