let R be the TRS under consideration h(_1) -> g(_1,_1) is in elim_R(R) let r0 be the right-hand side of this rule p0 = epsilon is a position in r0 we have r0|p0 = g(_1,_1) g(a,_2) -> f(b,activate(_2)) is in R let l'0 be the left-hand side of this rule theta0 = {_1/a, _2/a} is a mgu of r0|p0 and l'0 ==> h(a) -> f(b,activate(a)) is in EU_R^1 let r1 be the right-hand side of this rule p1 = 1 is a position in r1 we have r1|p1 = activate(a) activate(_1) -> _1 is in R let l'1 be the left-hand side of this rule theta1 = {_1/a} is a mgu of r1|p1 and l'1 ==> h(a) -> f(b,a) is in EU_R^2 let r2 be the right-hand side of this rule p2 = 1 is a position in r2 we have r2|p2 = a a -> b is in R let l'2 be the left-hand side of this rule theta2 = {} is a mgu of r2|p2 and l'2 ==> h(a) -> f(b,b) is in EU_R^3 let r3 be the right-hand side of this rule p3 = epsilon is a position in r3 we have r3|p3 = f(b,b) f(_1,_1) -> h(a) is in R let l'3 be the left-hand side of this rule theta3 = {_1/b} is a mgu of r3|p3 and l'3 ==> h(a) -> h(a) is in EU_R^4 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {} let theta' = {} we have r|p = h(a) and theta'(theta(l)) = theta(r|p) so, theta(l) = h(a) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=4, depth k=2 101 rule(s) generated