(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → CONS(X, n__from(s(X)))
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH(n__cons(X, Y)) → ACTIVATE(Y)
LENGTH1(X) → LENGTH(activate(X))
LENGTH1(X) → ACTIVATE(X)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(X) → LENGTH(activate(X))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
LENGTH1(
X) →
LENGTH(
activate(
X)) at position [0] we obtained the following new rules [LPAR04]:
LENGTH1(n__from(x0)) → LENGTH(from(x0))
LENGTH1(n__nil) → LENGTH(nil)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(x0, x1))
LENGTH1(x0) → LENGTH(x0)
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(x0))
LENGTH1(n__nil) → LENGTH(nil)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(x0, x1))
LENGTH1(x0) → LENGTH(x0)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
LENGTH1(
n__from(
x0)) →
LENGTH(
from(
x0)) at position [0] we obtained the following new rules [LPAR04]:
LENGTH1(n__from(x0)) → LENGTH(cons(x0, n__from(s(x0))))
LENGTH1(n__from(x0)) → LENGTH(n__from(x0))
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__nil) → LENGTH(nil)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(x0, x1))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(cons(x0, n__from(s(x0))))
LENGTH1(n__from(x0)) → LENGTH(n__from(x0))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(n__nil) → LENGTH(nil)
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(x0, x1))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
LENGTH1(
n__nil) →
LENGTH(
nil) at position [0] we obtained the following new rules [LPAR04]:
LENGTH1(n__nil) → LENGTH(n__nil)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(x0, x1))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(cons(x0, n__from(s(x0))))
LENGTH1(n__nil) → LENGTH(n__nil)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(x0, x1))
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
LENGTH1(
n__cons(
x0,
x1)) →
LENGTH(
cons(
x0,
x1)) at position [0] we obtained the following new rules [LPAR04]:
LENGTH1(n__cons(x0, x1)) → LENGTH(n__cons(x0, x1))
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(cons(x0, n__from(s(x0))))
LENGTH1(n__cons(x0, x1)) → LENGTH(n__cons(x0, x1))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
LENGTH1(
activate(
n__from(
x0))) evaluates to t =
LENGTH1(
activate(
n__from(
s(
x0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [x0 / s(x0)]
- Semiunifier: [ ]
Rewriting sequenceLENGTH1(activate(n__from(x0))) →
LENGTH1(
n__from(
x0))
with rule
activate(
X) →
X at position [0] and matcher [
X /
n__from(
x0)]
LENGTH1(n__from(x0)) →
LENGTH(
cons(
x0,
n__from(
s(
x0))))
with rule
LENGTH1(
n__from(
x0')) →
LENGTH(
cons(
x0',
n__from(
s(
x0')))) at position [] and matcher [
x0' /
x0]
LENGTH(cons(x0, n__from(s(x0)))) →
LENGTH(
n__cons(
x0,
n__from(
s(
x0))))
with rule
cons(
X1,
X2) →
n__cons(
X1,
X2) at position [0] and matcher [
X1 /
x0,
X2 /
n__from(
s(
x0))]
LENGTH(n__cons(x0, n__from(s(x0)))) →
LENGTH1(
activate(
n__from(
s(
x0))))
with rule
LENGTH(
n__cons(
X,
Y)) →
LENGTH1(
activate(
Y))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(18) NO